Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 119: 105536, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894577

RESUMO

Neuroinflammation plays a key etiological role in the progressive neuronal damage of neurodegenerative diseases. Our phenotypic-based screening discovered 1,6-O,O-diacetylbritannilactone (OABL, 1) from Inula britannica exhibited the potential anti-neuroinflammatory activity as well as a favorable blood-brain barrier penetration. 1 and its active derivative Br-OABL (2) with insert of Br at the C-14 position both modulated TLR4/NF-kB/MAPK pathways. However, proteome-wide identification of 1 binding proteins remains unclear. Here, we employed an adapted isoTOP-ABPP, quantitative thiol reactivity profiling (QTRP) approach, to identify and quantify thiol reactivity binding proteins in murine microglia BV-2 cells. We screened out 15 proteins co-targeted by 1 and 2, which are involved in cellular response to oxidative stress and negative regulation NF-κB transcription factor in biological processes. In site-specific profiling, NLRP3 was identified as a covalent target of 1 and 2 for the first time, and the Cys483 of NLRP3 NACHT domain was identified as one active-site of NLRP3 cysteine residues that can be covalently modified by the α-methylene-γ-lactone moiety. Furthermore, NLRP3 was validated to be directly binded by 1 and 2 by cellular thermo shift assay (CETSA) and activity-based protein profiling (ABPP), and NLRP3 functions were also verified by small interfering RNA approach. Notably, OABL treatment (i.p., 20 mg/kg/day) for 21 days reduced inflammation in 5XFAD mice brain. Together, we applied the QTRP to uncover the binding proteins of OABL in BV-2 cells, among which NLRP3 was revealed as a new covalent target of 1 and 2 against neuroinflammation.


Assuntos
Inflamação/tratamento farmacológico , Lactonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , Inula/química , Lactonas/química , Camundongos , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/análise , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sesquiterpenos/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/análise
2.
Redox Biol ; 50: 102229, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026701

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aß expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Sesquiterpenos , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases , Cognição , Modelos Animais de Doenças , Lactonas/farmacologia , Lactonas/uso terapêutico , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa