Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuroimage ; 237: 118192, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048899

RESUMO

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals (oscillatory activity) from broadband non-oscillatory (1/f) activity, so that changes in oscillatory activity resulting from experimental manipulations can be assessed. A widely used method to do this is to convert the data to the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each frequency, sources of power (i.e., oscillations and 1/f activity) scale by the same factor relative to the baseline (multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level of 1/f activity and alpha power are not positively correlated within participants, in line with the additive but not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/f activity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 1/f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the over- or under-estimation of the true interaction effect when groups differing in 1/f levels were compared, and it also led to the emergence of illusory interactions when none were present. This is because signal amplitude was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend testing whether the level of 1/f activity differs across groups or conditions and using multiple baseline correction strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or clinical studies.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Magnetoencefalografia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ondas Encefálicas/fisiologia , Eletroencefalografia/normas , Feminino , Neuroimagem Funcional/normas , Humanos , Magnetoencefalografia/normas , Masculino , Adulto Jovem
2.
J Neurosci ; 38(6): 1541-1557, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29311143

RESUMO

Forming valid predictions about the environment is crucial to survival. However, whether humans are able to form valid predictions about natural stimuli based on their temporal statistical regularities remains unknown. Here, we presented subjects with tone sequences with pitch fluctuations that, over time, capture long-range temporal dependence structures prevalent in natural stimuli. We found that subjects were able to exploit such naturalistic statistical regularities to make valid predictions about upcoming items in a sequence. Magnetoencephalography (MEG) recordings revealed that slow, arrhythmic cortical dynamics tracked the evolving pitch sequence over time such that neural activity at a given moment was influenced by the pitch of up to seven previous tones. Importantly, such history integration contained in neural activity predicted the expected pitch of the upcoming tone, providing a concrete computational mechanism for prediction. These results establish humans' ability to make valid predictions based on temporal regularities inherent in naturalistic stimuli and further reveal the neural mechanisms underlying such predictive computation.SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how the brain predicts upcoming events in the environment. To date, this question has primarily been addressed in experiments using relatively simple stimulus sequences. Here, we studied predictive processing in the human brain using auditory tone sequences that exhibit temporal statistical regularities similar to those found in natural stimuli. We observed that humans are able to form valid predictions based on such complex temporal statistical regularities. We further show that neural response to a given tone in the sequence reflects integration over the preceding tone sequence and that this history dependence forms the foundation for prediction. These findings deepen our understanding of how humans form predictions in an ecologically valid environment.


Assuntos
Antecipação Psicológica/fisiologia , Rede Nervosa/fisiologia , Estimulação Acústica , Adulto , Algoritmos , Percepção Auditiva/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Percepção da Altura Sonora/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
3.
Clin Neurophysiol ; 163: 244-254, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820994

RESUMO

OBJECTIVE: Diseases affecting sensorimotor function impair physical independence. Reliable functional clinical biomarkers allowing early diagnosis or targeting treatment and rehabilitation could reduce this burden. Magnetoencephalography (MEG) non-invasively measures brain rhythms such as the somatomotor 'rolandic' rhythm which shows intermittent high-amplitude beta (14-30 Hz) 'events' that predict behavior across tasks and species and are altered by sensorimotor neurological diseases. METHODS: We assessed test-retest stability, a prerequisite for biomarkers, of spontaneous sensorimotor aperiodic (1/f) signal and beta events in 50 healthy human controls across two MEG sessions using the intraclass correlation coefficient (ICC). Beta events were determined using an amplitude-thresholding approach on a narrow-band filtered amplitude envelope obtained using Morlet wavelet decomposition. RESULTS: Resting sensorimotor characteristics showed good to excellent test-retest stability. Aperiodic component (ICC 0.77-0.88) and beta event amplitude (ICC 0.74-0.82) were very stable, whereas beta event duration was more variable (ICC 0.55-0.7). 2-3 minute recordings were sufficient to obtain stable results. Analysis automatization was successful in 86%. CONCLUSIONS: Sensorimotor beta phenotype is a stable feature of an individual's resting brain activity even for short recordings easily measured in patients. SIGNIFICANCE: Spontaneous sensorimotor beta phenotype has potential as a clinical biomarker of sensorimotor system integrity.


Assuntos
Ritmo beta , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Ritmo beta/fisiologia , Reprodutibilidade dos Testes , Córtex Sensório-Motor/fisiologia , Adulto Jovem , Descanso/fisiologia , Pessoa de Meia-Idade
4.
Parkinsonism Relat Disord ; 110: 105397, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060621

RESUMO

INTRODUCTION: Rhythmic beta activity in the subthalamic nucleus (STN) local field potential (LFP) is associated with Parkinson disease (PD) severity, though not all studies have found this relationship. We investigated whether aperiodic 'noise' elements of LFP, specifically slope of the 1/f broadband, predict PD motor symptoms and outcomes of STN-DBS. METHODS: We studied micro-LFP from 19 PD patients undergoing STN-DBS, relating the aperiodic 1/f slope and the periodic beta oscillation components to motor severity using the UPDRS-III and improvement with DBS at 1 year. RESULTS: Beta power, not 1/f slope, independently predicted baseline UPDRS-III (r = 0.425, p = 0.020; r = -0.434, p = 0.032, respectively), but multiple regression using both predicted better (F (2, 16) = 6.621, p = 0.008, R2 = 0.453). Only multiple regression using both slope and beta power predicted improvement in UPDRS-III at 1 year post-operatively (F (2, 15) = 6.049, R2 = 0.446, p = 0.012). CONCLUSIONS: Both beta synchronization and slope of the 1/f broadband are informative of motor symptoms in PD and predict response to STN-DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
5.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34544762

RESUMO

Signal transmission in the brain propagates via distinct oscillatory frequency bands but the aperiodic component, 1/f activity, almost always co-exists which most of the previous studies have not sufficiently taken into consideration. We used a recently proposed parameterization model that delimits the oscillatory and aperiodic components of neural dynamics on lifespan aging data collected from human participants using magnetoencephalography (MEG). Since healthy aging underlines an enormous change in local tissue properties, any systematic relationship of 1/f activity would highlight their impact on the self-organized critical functional states. Furthermore, we have used patterns of correlation between aperiodic background and metrics of behavior to understand the domain general effects of 1/f activity. We suggest that age-associated global change in 1/f baseline alters the functional critical states of the brain affecting the global information processing impacting critically all aspects of cognition, e.g., metacognitive awareness, speed of retrieval of memory, cognitive load, and accuracy of recall through adult lifespan. This alteration in 1/f crucially impacts the oscillatory features peak frequency (PF) and band power ratio, which relates to more local processing and selective functional aspects of cognitive processing during the visual short-term memory (VSTM) task. In summary, this study leveraging on big lifespan data for the first time tracks the cross-sectional lifespan-associated periodic and aperiodic dynamical changes in the resting state to demonstrate how normative patterns of 1/f activity, PF, and band ratio (BR) measures provide distinct functional insights about the cognitive decline through adult lifespan.


Assuntos
Cognição , Longevidade , Adulto , Encéfalo , Estudos Transversais , Humanos , Magnetoencefalografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa