Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 44(13): 2158-2168, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28770274

RESUMO

PURPOSE: This retrospective study was done to examine whether the heterogeneity in primary tumor F-18-fluorodeoxyglucose (18F-FDG) and 18F-3'-fluoro-3'-deoxythymidine (18F-FLT) distribution can predict prognosis of patients with colorectal cancer who received surgery. METHODS: The enrolled 32 patients with colorectal cancer underwent both 18F-FDG- and 18F-FLT-PET/CT studies before surgery. Clinicopathological factors, stage, SUVmax, SUVmean, metabolic tumor volume (SUV ≥ 2.5), total lesion glycolysis, total lesion proliferation and seven texture heterogeneity parameters (coefficient of variation, local parameters: entropy, homogeneity, and dissimilarity; and regional parameters: intensity variability [IV], size-zone variability [SZV], and zone percentage [ZP]) were obtained. Progression free survival (PFS) was calculated by the Kaplan-Meier method. Prognostic significance was assessed by Cox proportional hazards analysis. RESULTS: Eight patients had eventually come to progression, and 24 patients were alive without progression during clinical follow-up [mean follow-up PFS; 55.9 months (range, 1-72)]. High stage (p = 0.004), high 18F-FDG-IV (p = 0.015), high 18F-FDG-SZV (p = 0.013) and high 18F-FLT-entropy (p = 0.015) were significant in predicting poor 5-year PFS. Other parameters did not predict the disease outcome. At bivariate analysis, disease event hazards ratios for 18F-FDG-IV and 18F-FDG-SZV remained significant when adjusted for stage and 18F-FLT-entropy (18F-FDG-IV; p = 0.004 [adjusted for stage], 0.007 [adjusted for 18F-FLT-entropy]; 18F-FDG-SZV; p = 0.028 [adjusted for stage], 0.040 [adjusted for 18F-FLT-entropy]). CONCLUSION: 18F-FDG PET heterogeneity parameters, IV and SZV, have a potential to be strong prognostic factors to predict PFS of patients with surgically resected colorectal cancer and are more useful than 18F-FLT-PET/CT heterogeneity parameters.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/cirurgia , Didesoxinucleosídeos , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico , Recidiva , Estudos Retrospectivos , Análise de Sobrevida
2.
Hematol Rep ; 16(1): 32-41, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247994

RESUMO

Fluorine-18 fluorodeoxyglucose ([18F]FDG) is nowadays the leading positron emission tomography (PET) tracer for routine clinical work-ups in hematological malignancies; however, it is limited by false positive findings. Notably, false positives can occur in inflammatory and infective cases or in necrotic tumors that are infiltrated by macrophages and other inflammatory cells. In this context, 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been shown to be a promising imaging biomarker of hematological malignant cell proliferation. In this review, a total of 15 papers were reviewed to collect literature data regarding the clinical application of [18F]FLT PET/CT in hematological malignancies. This imaging modality seems to be a suitable tool for noninvasive assessment of tumor grading, also showing a correlation with Ki-67 immunostaining. Moreover, [18F]FLT PET/CT demonstrated high sensitivity in detecting aggressive lymphoma lesions, especially when applying a standardized uptake value (SUV) cutoff of 3. At baseline, the potential of [18F]FLT imaging as a predictive tool is demonstrated by the low tracer uptake in patients with a complete response. However, its use is limited in evaluating bone diseases due to its high physiological uptake in bone marrow. Interim [18F]FLT PET/CT (iFLT) has the potential to identify high-risk patients with greater precision than [18F]FDG PET/CT, optimizing risk-adapted therapy strategies. Moreover, [18F]FLT uptake showed a greater ability to differentiate tumor from inflammation compared to [18F]FDG, allowing the reduction of false-positive findings and making the first one a more selective tracer. Finally, FLT emerges as a superior independent predictor of PFS and OS compared to FDG and ensures a reliable early response assessment with greater accuracy and predictive value.

3.
Mol Imaging Radionucl Ther ; 31(3): 207-215, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36268887

RESUMO

Objectives: Metastases and primary malignancies are common in the liver. Local ablative applications such as transarterial chemoembolization (TACE), and transarterial radioembolization (TARE) provide minimally invasive and safe treatment in unresectable liver tumors. Early detection of response to treatment prevents unnecessary toxicity and cost in non-responder patients and provides an earlier use of other options that may be effective. This study aimed to identify the role of 18F-fluorothymidine (FLT) positron emission tomography/computed tomography (PET/CT) in the assessment of early response to TACE and TARE treatments in patients with unresectable primary and metastatic liver tumors. Methods: This single-center study included 63 patients who underwent 18F-FLT PET/CT for response evaluation after TACE and TARE. After excluding 20 patients whose data were missing 43 TARE-receiving patients were analyzed. The compatibility of change in semi-quantitative values obtained from the 18F-FLT PET/CT images with the treatment responses detected in 18F-fluorodeoxyglucose PET/CT, CT, and MR images and survival was evaluated. Results: There was no correlation between early metabolic, morphological response, and 18F-FLT uptake pattern, and change in standardized uptake values (SUV) which were ΔSUVmax, ΔSUVmean, ΔSUVpeak., ΔSUVmean, Δ SUVpeak values. There was no significant correlation between 18F-FLT uptake pattern, ΔSUVmax, ΔSUVmean, ΔSUVpeak, and overall survival, progression-free survival (PFS) for the target lobe PFS for the whole-body. The survival distributions for the patients with >30% change in Δ SUVmax and ΔSUVpeak values were statistically significantly longer than the patients with <30% change (p<0.009 and p<0.024, respectively). Conclusion: There was significant longer PFS for target liver lobe in patients with more than 30% decrease in 18F-FLT SUVmax and SUVpeak of the liver lesion in primary and metastatic unresectable liver tumors undergoing TARE.

4.
Mol Imaging Biol ; 24(6): 898-908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35650411

RESUMO

PURPOSE: The primary goal of this study is to evaluate the accuracy of the fluorescence ubiquitination cell cycle indicator (FUCCI) system with fluorescence in vivo imaging compared to 3'-deoxy-3'-[18F]fluorothymidine ([18F]-FLT) positron emission tomography (PET)/computed tomography (CT) and biological validation through histology. Imaging with [18F]-FLT PET/CT can be used to noninvasively assess cancer cell proliferation and has been utilized in both preclinical and clinical studies. However, a cost-effective and straightforward method for in vivo, cell cycle targeted cancer drug screening is needed prior to moving towards translational imaging methods such as PET/CT. PROCEDURES: In this study, fluorescent MDA-MB-231-FUCCI tumor growth was monitored weekly with caliper measurements and fluorescent imaging. Seven weeks post-injection, [18F]-FLT PET/CT was performed with a preclinical PET/CT, and tumors samples were harvested for histological analysis. RESULTS: RFP fluorescent signal significantly correlated with tumor volume (r = 0.8153, p < 0.0001). Cell proliferation measured by GFP fluorescent imaging was correlated with tumor growth rate (r = 0.6497, p < 0.001). Also, GFP+ cells and [18F]-FLT regions of high uptake were both spatially located in the tumor borders, indicating that the FUCCI-IVIS method may provide an accurate assessment of tumor heterogeneity of cell proliferation. The quantification of total GFP signal was correlated with the sum of tumor [18F]-FLT standard uptake value (SUV) (r = 0.5361, p = 0.0724). Finally, histological analysis confirmed viable cells in the tumor and the correlation of GFP + and Ki67 + cells (r = 0.6368, p = 0.0477). CONCLUSION: Fluorescent imaging of the cell cycle provides a noninvasive accurate depiction of tumor progression and response to therapy, which may benefit in vivo testing of novel cancer therapeutics that target the cell cycle.


Assuntos
Didesoxinucleosídeos , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias/diagnóstico por imagem , Proliferação de Células , Ciclo Celular , Ubiquitinação , Compostos Radiofarmacêuticos , Fluordesoxiglucose F18
5.
J Nucl Med ; 62(5): 628-635, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037090

RESUMO

Diagnosing relapse after radiotherapy for lung cancer is challenging. The specificity of both CT and 18F-FDG PET/CT is low because of radiation-induced changes. 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET has previously demonstrated higher specificity for malignancy than 18F-FDG PET. We investigated the value of 18F-FLT PET/CT for diagnosing relapse in irradiated lung cancer. Methods: Patients suspected of relapse of lung cancer after definitive radiotherapy (conventional fractionated radiotherapy [cRT] or stereotactic body radiotherapy [SBRT]) were included. Sensitivity and specificity were analyzed both within the irradiated high-dose volume (HDV) and on a patient basis. Marginal differences and interobserver agreement were assessed. Results: Sixty-three patients who had received radiotherapy in 70 HDVs (34 cRT; 36 SBRT) were included. The specificity of 18F-FLT PET/CT was higher than that of 18F-FDG PET/CT (HDV, 96% [95% CI, 87-100] vs. 71% [95% CI, 57-83] [P = 0.0039]; patient-based, 90% [95% CI, 73-98] vs. 55% [95% CI, 36-74] [P = 0.0020]). The difference in specificity between 18F-FLT PET/CT and 18F-FDG PET/CT was higher after cRT than after SBRT. The sensitivity of 18F-FLT PET/CT was lower than that of 18F-FDG PET/CT (HDV, 69% [95% CI, 41-89] vs. 94% [95% CI, 70-100] [P = 0.1250]; patient-based, 70% [95% CI, 51-84] vs. 94% [95% CI, 80-99] [P = 0.0078]). Adding 18F-FLT PET/CT when 18F-FDG PET/CT was positive or inconclusive improved the diagnostic value compared with 18F-FDG PET/CT alone. In cRT HDVs, the probability of malignancy increased from 67% for 18F-FDG PET/CT alone to 100% when both tracers were positive. Conclusion:18F-FLT PET/CT adds diagnostic value to 18F-FDG PET/CT in patients with suspected relapse. The diagnostic impact of 18F-FLT PET/CT was highest after cRT. We suggest adding 18F-FLT PET/CT when 18F-FDG PET/CT is inconclusive or positive within the previously irradiated volume to improve diagnostic value in patients for whom histologic confirmation is not easily obtained.


Assuntos
Didesoxinucleosídeos , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Resultado do Tratamento
6.
J Cancer ; 11(5): 1104-1114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31956357

RESUMO

Background: To determine the optimum conditions for diagnosis of nasopharyngeal carcinoma, we established VX2 rabbit model to delineate gross target volume (GTV) in different imaging methods. Methods: The orthotopic nasopharyngeal carcinoma (NPC) was established in sixteen New Zealand rabbits. After 7-days inoculation, the rabbits were examined by CT scanning and then sacrificed for pathological examination. To achieve the best delineation, different GTVs of CT, MRI, 18F-FDG PET/CT, and 18F-FLT PET/CT images were correlated with pathological GTV (GTVp). Results: We found 45% and 60% of the maximum standardized uptake value (SUVmax) as the optimal SUV threshold for the target volume of NPC in 18F-FDG PET/CT and 18F-FLT PET/CT images, respectively (GTVFDG45% and GTVFLT60%). Moreover, the GTVMRI and GTVCT were significantly higher than the GTVp (P ≤ 0.05), while the GTVFDG45% and especially GTVFLT60% were similar to the GTVp (R = 0.892 and R = 0.902, respectively; P ≤ 0.001). Conclusions: Notably, the results suggested that 18F-FLT PET/CT could reflect the tumor boundaries more accurately than 18F-FDG PET/CT, MRI and CT, which makes 18F-FLT PET-CT more advantageous for the clinical delineation of the target volume in NPC.

7.
Diagnostics (Basel) ; 10(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106426

RESUMO

Although 3'-deoxy-3'[(18)F]-fluorothymidine (FLT)- positron emission tomography (PET) has been utilized for tumor response assessment to neoadjuvant chemotherapy in soft tissue sarcomas, it has not been exploited for the assessment of early response to systematically targeted therapies. Herein, we investigated the 18F-FLT PET/CT kinetics in patients with sarcoma who received targeted therapies. Among 15 patients with sarcoma who underwent 18F-FLT PET/CT, 5 patients (33%) patients were imaged at three time points: At baseline and at 1-15 weeks (MDM2-inhibitor treatment), and 10 patients (67%) were imaged twice: At baseline and at 1-4 weeks (MDM2 inhibitor, n = 5 ;c-met inhibitor n = 5). The patients with sarcoma had a total of 18 identifiable tumors. Twelve of 15 patients (80%) demonstrated 18F-FLT concentrations changes early, i.e., at 1-4 weeks. Eight patients responded (53.3%), four patients progressed (26.7%) based on FLT change of more than 10% increase, and three patients (20%) demonstrated no change. 18F-FLT PET/CT may be used for early response imaging to molecularly targeted therapies in patients with sarcoma. Further larger studies in specific sarcoma sub-types are warranted.

8.
Diagnostics (Basel) ; 10(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935818

RESUMO

Although 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) is a sensitive nuclear medicine modality, specificity for characterizing lung cancer is limited. Tumor proliferation and early response to molecularly targeted therapy could be visualized using 3'-deoxy-3'[(18)F]-fluorothymidine (18F-FLT) PET/CT. The superiority of 18F-FLT PET/CT over 18F-FDG PET/CT in early therapeutic monitoring has been well described in patients after chemotherapy, radiotherapy, and/or chemo/radiotherapy. In thispilot study, we explorethe use of 18F-FLT PET/CT as an early response evaluation modality in patients with lung cancerand provide specific case studies of patients with small cell lung cancer and non-small cell lung cancer who received novel targeted therapies. Early response for c-MET inhibitor was observed in four weeks and for MDM2 inhibitor in nine days.

9.
Mol Imaging Biol ; 21(4): 713-721, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30406513

RESUMO

PURPOSE: To assess tumor cell proliferation and repopulation during fractionated radiotherapy and investigate the spatial concordance of cell proliferation and repopulation according to the uptake of 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT). PROCEDURES: Mice bearing A549 xenograft tumors were assigned to five irradiated groups, including 3 fraction (f)/6 days (d), 6f/12d, 9f/18d, 12f/24d, and 18f/36d with 2 Gy/f irradiations performed every other day and one non-irradiated group. Serial [18F]FLT positron emission tomography (PET) scans were performed at different time points as the groups finished the radiotherapy. The maximum of standard uptake values (SUVmax) were measured to confirm the likely time of tumor repopulation. A layer-by-layer comparison between SUVmax of PET images and Ki-67 LI of pathology images, including the thresholds at which maximum overlap occurred between FLT-segmented areas and cell proliferation areas were conducted to evaluate the spatial correlation. RESULTS: The SUVmax decreased in the 3f/6d group (P = 0.000) compared to the non-irradiated group, increased in the 6f/12d group and then gradually reduced with prolonged treatment. Proliferation changes in 6f/12d group on pathology images were also confirmed. Significant correlations were found between the SUVmax and Ki-67 LI in each in vitro tumor of cell proliferation group and accelerated repopulation group (both of the P < 0.001). Furthermore, the mean overlap region rates (ORRs) were 56.21 % and 57.82 % in the proliferation group and repopulation group, respectively. The data represented the preferable registration. CONCLUSIONS: [18F]FLT PET is a promising imaging surrogate of tumor proliferative response to fractionated radiotherapy and may help make an adaptive radiation oncology treatment plan to realize radiotherapy dose painting.


Assuntos
Didesoxinucleosídeos/farmacocinética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons , Dosagem Radioterapêutica , Células A549 , Animais , Proliferação de Células , Estudos de Viabilidade , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia Computadorizada por Raios X
10.
J Nucl Med ; 57(2): 266-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26315835

RESUMO

UNLABELLED: We present and test the use of multimodality imaging as a topological tool to map the amount of the body exposed to ionizing radiation and the location of exposure, which are important indicators of survival and recovery. To achieve our goal, PET/CT imaging with 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) was used to measure cellular proliferation in bone marrow (BM), whereas MRI using ultra-small superparamagnetic iron oxide (USPIO) particles provided noninvasive information on radiation-induced vascular damage. METHODS: Animals were x-ray-irradiated at a dose of 7.5 Gy with 1 of 3 radiation schemes-whole-body irradiation, half-body shielding (HBS), or 1-leg shielding (1LS)-and imaged repeatedly. The spatial information from the CT scan was used to segment the region corresponding to BM from the PET scan using algorithms developed in-house, allowing for quantification of proliferating cells, and BM blood volume was estimated by measuring the changes in the T2 relaxation rates (ΔR2) collected from MR scans. RESULTS: (18)F-FLT PET/CT imaging differentiated irradiated from unirradiated BM regions. Two days after irradiation, proliferation of 1LS animals was significantly lower than sham (P = 0.0001, femurs; P < 0.0001, tibias) and returned to sham levels by day 10 (P = 0.6344, femurs; P = 0.3962, tibias). The degree of shielding affected proliferation recovery, showing an increase in the irradiated BM of the femurs, but not the tibias, of HBS animals when compared with 1LS (P = 0.0310, femurs; P = 0.5832, tibias). MRI of irradiated spines detected radiation-induced BM vascular damage, measured by the significant increase in ΔR2 2 d after whole-body irradiation (P = 0.0022) and HBS (P = 0.0003) with a decreasing trend of values, returning to levels close to baseline over 10 d. Our data were corroborated using γ-counting and histopathology. CONCLUSION: We demonstrated that (18)F-FLT PET/CT and USPIO MRI are valuable tools in mapping regional radiation exposure and the effects of radiation on BM. Analysis of the (18)F-FLT signal allowed for a clear demarcation of exposed BM regions and elucidated the kinetics of BM recovery, whereas USPIO MRI was used to assess vascular damage and recovery.


Assuntos
Doenças da Medula Óssea/diagnóstico por imagem , Doenças da Medula Óssea/patologia , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Didesoxinucleosídeos , Óxido Ferroso-Férrico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Compostos Radiofarmacêuticos , Animais , Hemorragia/diagnóstico por imagem , Hemorragia/etiologia , Hemorragia/patologia , Imageamento por Ressonância Magnética , Magnetismo , Masculino , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X , Irradiação Corporal Total , Raios X
11.
Ann Nucl Med ; 30(3): 207-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661845

RESUMO

PURPOSE: There is currently no single modality for accurate characterization of enlarged mediastinal lymph nodes into benign or malignant. Recently (18)F-fluorothymidine (FLT) has been used as a proliferation marker. In this prospective study, we examined the role of (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) and (18)F-FLT PET/CT in categorizing mediastinal lymph nodes as benign or malignant. MATERIALS AND METHODS: A total of 70 consecutive patients with mediastinal lymphadenopathy detected on computed tomography (CT) or chest radiograph underwent whole body (18)F-FLT PET/CT and (18)F-FDG PET/CT (within 1 week of each other). Lymph nodal tracer uptake was determined by calculation of standardized uptake value (SUV) with both the tracers. Results of PET/CT were compared with histopathology of the lymph nodes. RESULTS: Histopathology results showed thirty-seven patients with sarcoidosis, seven patients with tuberculosis, nine patients with non-small cell lung cancer, five patients with Hodgkin's lymphoma and twelve patients with non-Hodgkin's lymphoma. The mean FDG SUVmax of sarcoidosis, tuberculosis, Hodgkin's and non-Hodgkin's lymphoma was 12.7, 13.4, 8.2, and 8.8, respectively, and the mean FLT SUVmax was 6.0, 5.4, 4.4, and 3.8, respectively. It was not possible to characterize mediastinal lymphadenopathy as benign or malignant solely based on FDG SUVmax values (p > 0.05) or FLT SUVmax values (p > 0.05). There was no significant difference in FDG uptake (p > 0.9) or FLT uptake (p > 0.9) between sarcoidosis and tuberculosis. In lung cancer patients, the FDG SUVmax and FLT SUVmax of those lymph nodes with tumor infiltration on biopsy was 6.7 and 3.9, respectively, and those without nodal infiltration was 6.4 and 3.7, respectively, and both the tracers were not able to characterize the nodal status as malignant or benign (p > 0.05). CONCLUSION: Though (18)F-FLT PET/CT and (18)F-FDG PET/CT reflect different aspects of biology, i.e., proliferation and metabolism, respectively, neither tracer could provide satisfactory categorization of benign and malignant lymph nodes. The results of this study clearly suggest that differentiation of mediastinal nodes into benign and malignant solely based on SUVmax values cannot be relied upon, especially in settings where tuberculosis and sarcoidosis are common.


Assuntos
Didesoxinucleosídeos , Fluordesoxiglucose F18 , Linfadenopatia/diagnóstico por imagem , Mediastino/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
12.
Lung Cancer ; 94: 7-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26973200

RESUMO

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT) is established for characterising indeterminate pulmonary nodules and staging lung cancer where there is curative intent. Whilst a sensitive technique, specificity for characterising lung cancer is limited. There is recognition that evaluation of other aspects of abnormal cancer biology in addition to glucose metabolism may be more helpful in characterising tumours and predicting response to novel targeted cancer therapeutics. Therefore, efforts have been made to develop and evaluate new radiopharmaceuticals in order to improve the sensitivity and specificity of PET imaging in lung cancer with regards to characterisation, treatment stratification and therapeutic monitoring. 18F-fluorothymidine (18F-FLT) is a marker of cellular proliferation. It shows a lower accumulation in tumours than 18F-FDG as it only accumulates in the cells that are in the S phase of growth and demonstrates a low sensitivity for nodal staging. Its main role is in evaluating treatment response. Methionine is an essential amino acid. 11C-methionine is more specific and sensitive than 18F-FDG in differentiating benign and malignant thoracic nodules. 18Ffluoromisonidazole (18F-FMISO) is used for imaging tumour hypoxia. Tumour response to treatment is significantly related to the level of tumour oxygenation. Angiogenesis is the process by which new blood vessels are formed in tumours and is involved in tumour growth and metastatic tumour spread and is a therapeutic target. Most clinical studies have focused on targeted integrin PET imaging of which αvß3 integrin is the most extensively investigated. It is upregulated on activated endothelial cells in association with tumour angiogenesis. Neuroendocrine tumour tracers, particularly 68Ga-DOTA-peptides, have an established role in imaging of carcinoid tumours. Whilst most of these tracers have predominantly been used in the research environment, they offer exciting opportunities for improving staging, characterisation, stratification and response assessment in an era of increased personalised therapy in lung cancer.


Assuntos
Neoplasias Pulmonares/diagnóstico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética , Estadiamento de Neoplasias , Neovascularização Patológica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa