Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 41(18): 1709-1717, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323872

RESUMO

Theoretical investigations have elucidated the mechanism of metal-free electrophilic phosphinative cyclization of alkynes reaction reported by Miura and coworkers. Two competitive mechanisms I and II were explored without or with 2,6-lutidine. Both of I and II involve transformation of P(V) to P(III), electrophilic addition, ring opening and cyclization/cyclization, hydrogen-transfer, and oxidation. The rate-determining step of mechanism I and competitive less-step II is electrophilic [2 + 1] cycloaddition and electrophilic addition via single CP bond formation with activation barrier of 13.5 and 10.6 kcal/mol, respectively. Our calculation results suggested that the cumulative effect of the isomer of 2,6-lutidine and Tf2 O as well as TfO- affects the title reaction to some extent, and simultaneously activates key reaction sites and reverses the polarities of them via the formation of abundant noncovalent interactions to decrease activation barriers of TSs. In addition, the effects of two series substituents on reactivity of phosphine oxide were investigated. Therefore, our study will serve as useful guidance for more efficient metal-free synthesis of organophosphorus compounds mediated by pyridine reagents.

2.
J Inorg Biochem ; 203: 110944, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794895

RESUMO

Bridge splitting reactions between [Pd(C2,N-dmba)(µ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.


Assuntos
Antineoplásicos/síntese química , Compostos Organometálicos/síntese química , Paládio/química , Inibidores de Proteases/síntese química , Piridinas/química , Animais , Antineoplásicos/farmacologia , Benzilaminas/química , Catepsinas/antagonistas & inibidores , Catepsinas/química , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Compostos Organometálicos/farmacologia , Inibidores de Proteases/farmacologia , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa