RESUMO
Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.
Assuntos
4-Butirolactona/análogos & derivados , Afídeos , Gossipol , Cetonas , Polifenóis , Piridinas , Animais , Afídeos/genética , Afídeos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Gossipol/metabolismo , Filogenia , Xenobióticos/farmacologia , Xenobióticos/metabolismoRESUMO
In insect, the cytochrome P450 plays a pivotal role in detoxification to toxic allelochemicals. Helicoverpa armigera can tolerate and survive in 2-tridecanone treatment owing to the CYP6B6 responsive expression, which is controlled by some regulatory DNA sequences and transcription regulators. Therefore, the 2-tridecanone responsive region and transcription regulators of the CYP6B6 are responsible for detoxification of cotton bollworm. In this study, we used yeast one-hybrid to screen two potential transcription regulators of the CYP6B6 from H. armigera that respond to the plant secondary toxicant 2-tridecanone, which were named Prey1 and Prey2, respectively. According to the NCBI database blast, Prey1 is the homology with FK506 binding protein (FKBP) of Manduca sexta and Bombyx mori that belongs to the FKBP-C superfamily, while Prey2 may be a homology of an unknown protein of Papilio or the fcaL24 protein homology of B. mori. The electrophoretic mobility shift assays revealed that the FKBP of prokaryotic expression could specifically bind to the active region of the CYP6B6 promoter. After the 6th instar larvae of H. armigera reared on 2-tridecanone artificial diet, we found there were similar patterns of CYP6B6 and FKBP expression of the cotton bollworm treated with 10 mg g-1 2-tridecanone for 48 h, which correlation coefficient was the highest (0.923). Thus, the FKBP is identified as a strong candidate for regulation of the CYP6B6 expression, when the cotton bollworm is treated with 2-tridecanone. This may lead us to a better understanding of transcriptional mechanism of CYP6B6 and provide very useful information for the pest control.
Assuntos
Família 6 do Citocromo P450/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Cetonas/farmacologia , Mariposas/fisiologia , Animais , Família 6 do Citocromo P450/genética , DNA Complementar/genética , Ensaio de Desvio de Mobilidade Eletroforética , Biblioteca Gênica , Genes Reporter , Mariposas/efeitos dos fármacos , Plasmídeos/genética , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Estresse Fisiológico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética , Leveduras/metabolismoRESUMO
The full-length cDNA (2320 bp) encoding a putative iron-binding transferrin protein from Helicoverpa armigera was cloned and named HaTrf. The putative HaTrf sequence included 670 amino acids with a molecular mass of approximately 76 kDa. Quantitative PCR results demonstrated that the transcriptional level of HaTrf was significantly higher in the sixth instar and pupa stages as compared with other developmental stages. HaTrf transcripts were more abundant in fat bodies and in the epidermis than in malpighian tubules. Compared with the control, the expression of HaTrf increased dramatically 24 h after treatment with 2-tridecanone. Apparent growth inhibition with a dramatic body weight decrease was observed in larvae fed with HaTrf double-stranded RNA (dsRNA), as compared with those fed with green fluorescent protein dsRNA. RNA interference of HaTrf also significantly increased the susceptibility of larvae to 2-tridecanone. These results indicate the possible involvement of HaTrf in tolerance to plant secondary chemicals.
Assuntos
Cetonas/farmacologia , Mariposas/efeitos dos fármacos , Transferrinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Cetonas/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Pupa/efeitos dos fármacos , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , RNA de Cadeia Dupla/genética , Solanaceae/metabolismoRESUMO
A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest.
Assuntos
Alcanos/metabolismo , Formigas/fisiologia , Formiatos/metabolismo , Cetonas/metabolismo , Feromônios/metabolismo , Animais , Comportamento Animal , Espécies Introduzidas , América do NorteRESUMO
Cotton bollworm (Helicoverpa armigera) is a Lepidopteran noctuid pest with a global distribution. It has a wide range of host plants and can harm cotton, tomato, tobacco, and corn, as well as other crops. H. armigera larvae damage the flower buds, flowers, and fruits of tomato and cause serious losses to tomato production. Tomato uses the allelochemical 2-tridecanone to defend against this damage. So far, there have been no reports on whether the adaptation of H. armigera to 2-tridecanone is related to its symbiotic microorganisms. Our study found that Corynebacterium sp. 2-TD, symbiotic bacteria in H. armigera, mediates the toxicity of the 2-tridecanone to H. armigera. Corynebacterium sp. 2-TD, which was identified by 16S rDNA gene sequence analysis, was screened out using a basal salt medium containing a unique carbon source of 2-tridecanone. Then, Corynebacterium sp. 2-TD was confirmed to be distributed in the gut of H. armigera by quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). The survival rate of H. armigera increased by 38.3% under 2-tridecanone stress after inoculation with Corynebacterium sp. 2-TD. The degradation effect of Corynebacterium sp. 2-TD on 2-tridecanone was verified by ultra-high-performance liquid chromatography (UPLC). Our study is the first to report the isolation of gut bacteria that degrade 2-tridecanone from the important agricultural pest H. armigera and to confirm bacterial involvement in host adaptation to 2-tridecanone, which provides new insights into the adaptive mechanism of agricultural pests to host plants.
Assuntos
Mariposas , Animais , Hibridização in Situ Fluorescente , Larva , Corynebacterium/genética , Feromônios/metabolismo , DNA Ribossômico , Carbono/metabolismoRESUMO
BACKGROUND: Extensive research has been conducted on insect chitinases. However, little is known about the function of chitinase in the regulation of the surface structure of the peritrophic matrix (PM) in larval midguts. The aim of this study was to analyze the effect of HaCHT4 on the chitin content and surface structure of the PM during larval growth and development of Helicoverpa armigera. RESULTS: The expression level of HaCHT4 was lower and the chitin content was higher in the early stages of fourth to sixth instar larvae, but they were reversed in the corresponding late stages. The correlation coefficient between the expression level of HaCHT4 and the chitin content was -0.585 (P < 0.05), with a higher negative correlation of -0.934 for the fourth instar (P < 0.01). Scanning electron microscopy (SEM) showed that the surface structure of PM was multi-laminated with small pores in the early stages of fourth to sixth instar larvae, and more and bigger pores in the late stages. Low expression of HaCHT4 caused by RNA interference (RNAi) resulted in the increase of chitin content in the PM, and the surface structure of PM became multilayered with smaller pore size in the late stage of fourth instar larvae. Also, induction of HaCHT4 by application of 2-tridecanone (2-TD), decreased the chitin content of PM, caused larger pores to form and lots of food bolus to attach to the PM surface, and also increased the larval susceptibility to chlorantraniliprole. CONCLUSION: These results provided strong evidence that HaCHT4 plays an important role by regulating the chitin content of the PM and its surface structure, thereby affecting the sensitivity of H. armigera to chlorantraniliprole.
Assuntos
Quitinases , Mariposas , Animais , Quitina , Quitina Sintase/genética , Quitinases/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , LarvaRESUMO
Alcohol dehydrogenase 5 (ADH5) is a member of medium-chain dehydrogenase/reductase family and takes part in cellular formaldehyde and S-nitrosoglutathione metabolic network. 2-tridecanone (2-TD) is a toxic compound in many Solanaceae crops to defend against a variety of herbivory insects. In the broader context of insect development and pest control strategies, this study investigates how a new ADH5 from Helicoverpa armigera (HaADH5) regulates the expression of CYP6B6, a gene involved in molting and metamorphosis, in response to 2-TD treatment. Cloning of the HaADH5 complementary DNA sequence revealed that its 1002 bp open reading frame encodes 334 amino acids with a predicted molecular weight of 36.5 kD. HaADH5 protein was purified in the Escherichia coli Transetta (pET32a-HaADH5) strain using a prokaryotic expression system. The ability of HaADH5 protein to interact with the 2-TD responsive region within the promoter of CYP6B6 was confirmed by an in vitro electrophoretic mobility shift assay and transcription activity validation in yeast. Finally, the expression levels of both HaADH5 and CYP6B6 were found to be significantly decreased in the midgut of 6th instar larvae after 48 h of treatment with 10 mg/g 2-TD artificial diet. These results indicate that upon 2-TD treatment of cotton bollworm, HaADH5 regulates the expression of CYP6B6 by interacting with its promoter. As HaADH5 regulation of CYP6B6 expression may contribute to the larval xenobiotic detoxification, molting and metamorphosis, HaADH5 is a candidate target for controlling the growth and development of cotton bollworm.
Assuntos
Aldeído Oxirredutases/genética , Família 6 do Citocromo P450/genética , Proteínas de Insetos/genética , Cetonas/metabolismo , Mariposas/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Família 6 do Citocromo P450/química , Família 6 do Citocromo P450/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , FilogeniaRESUMO
Despite there being a number of excellent studies on detoxification enzyme-mediated interaction between insect and plant allelochemical, there are no reports on the pathway of the transferrin effect in insect response to host plant allelochemical. Our research indicates that Helicoverpa armigera transferrin (HaTrf) inhibited the apoptotic cell death treated by 2-tridecanone, a host plant allelochemical present in tomato species (Lycopersicon hirsutum f. glabratum), by cellular redox-related transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2). Nrf2 can defend organisms against the detrimental effects of oxidative stress and play pivotal roles in preventing host plant allelochemical-related toxicity. This study explains how HaTrf inhibited the apoptotic cell death during exposure to host plant allelochemical 2-tridecanone and provides a novel view on transferrin and its anti-apoptotic role in plant-insect interactions.
Assuntos
Proteínas de Insetos/metabolismo , Cetonas/metabolismo , Mariposas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Feromônios/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Animais , Apoptose , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Mariposas/citologia , Mariposas/genética , Fator 2 Relacionado a NF-E2/genética , OxirreduçãoRESUMO
2-Tridecanone, a plant allelochemical present in a large range of tomato species ( Lycopersicon hirsutum f. glabratum), can induce the expression of Helicoverpa armigera transferrin ( HaTrf), which is necessary for insect growth and development. To gain further insight into the mechanism of HaTrf in response to 2-tridecanone, we measured the iron and H2O2 levels in the hemolymph during exposure to 2-tridecanone and then explored the effect of transferrin downregulation in a H. armigera fat body cell line exposed to 2-tridecanone. We found that the reduction of HaTrf levels via RNA interference caused rapid apoptotic cell death during exposure to 2-tridecanone. There have been no reports about transferrin genes related to apoptosis induced by plant allelochemicals. Our results indicate that HaTrf mediates the inhibition of apoptotic cell death during exposure to 2-tridecanone and provides insight into the importance of transferrin in the interaction between plants and insects.
Assuntos
Corpo Adiposo/citologia , Proteínas de Insetos/metabolismo , Cetonas/farmacologia , Lepidópteros/metabolismo , Transferrina/metabolismo , Animais , Apoptose , Linhagem Celular , Corpo Adiposo/metabolismo , Hemolinfa/química , Peróxido de Hidrogênio/química , Ferro/química , Lepidópteros/citologia , Interferência de RNARESUMO
The expression level of cytochrome P450 genes in insects can be induced by plant allelochemicals, which is important for insects to adapt to host plants. Cytochrome P450 CYP6B7 has been reported to be involved in pyrethroid insecticide resistance in Helicoverpa armigera, and its transcription level was induced by some inducers. Currently, the regulatory mechanism of the induced expression of CYP6B7 remains unknown, although it is very important for understanding the detoxification mechanism to allelochemicals in host plants. The objective of the present study was to investigate the cis-acting element in the promoter of CYP6B7 mediating the inducible up-regulation of CYP6B7 in H. armigera by 2-tridecanone. The promoter region of CYP6B7 was cloned by genome walking technique and analyzed by transient transfection assay. Progressive 5' deletion of the promoter region of CYP6B7 revealed that the relative luciferase activity of construct -320/+232 could be significantly induced by 2-tridecanone. Further stepwise deletion between -320 and -238 bp found that construct -292/+232 could also be significantly induced by 2-tridecanone, but the adjacent construct -256/+232 could not, suggesting the essential role of the sequence between -292 and -257 bp for 2-tridecanone induction. Nucleotide mutations between -292 and -281 bp had no influence on the induction effect by 2-tridecanone, but nucleotide mutations between -280 and -257 bp significantly decreased the induction effect. These results demonstrated that the cis-acting element for 2-tridecanone induction was between -280 and -257 bp in the promoter of CYP6B7.
Assuntos
Família 6 do Citocromo P450/genética , Cetonas/farmacologia , Lepidópteros/enzimologia , Lepidópteros/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Animais , Clonagem Molecular , Lepidópteros/efeitos dos fármacos , Lepidópteros/fisiologia , Mutação , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacosRESUMO
P-glycoprotein (P-gp) exists in animals, fungi and bacteria and likely evolved as a defense mechanism against harmful substances. Here a cDNA (4054bp) encoding a putative P-glycoprotein gene from Helicoverpa armigera was cloned and named HaPgp1. This putative HaPgp1 sequence encoded a protein of 1253 amino acids with a molecular mass of approximately 137kDa. qPCR analyses demonstrated that the expression of HaPgp1 was significantly higher in 4th instar larvae when compared to other developmental stages. HaPgp1 transcripts were more abundant in the head and fat bodies than in other tissues. Compared with the control, the expression of HaPgp1 reach a peak at 12h after the treatment by 2-tridecanone in all tissues. However, the expression of HaPgp1 increased from 12h to 48h after treatment with abamectin in all tissues. Immunohistochemistry analyses also verified that 2-tridecanone and abamectin can induce the increase of HaPgp1 expression. RNAi of HaPgp1 significantly raised the mortality rate of larvae treated by 2-tridecanone and abamectin, as compared to control larvae fed with GFP dsRNA. These results illustrate the possible involvement of HaPgp1 as a component of the protective mechanisms to plant secondary chemicals such as 2-tridecanone and to certain classes of insecticides, like abamectin.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/antagonistas & inibidores , Ivermectina/análogos & derivados , Cetonas/antagonistas & inibidores , Mariposas/química , Mariposas/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Clonagem Molecular , Ecossistema , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ivermectina/antagonistas & inibidores , Mariposas/crescimento & desenvolvimento , Filogenia , Plantas/metabolismo , Metabolismo Secundário , Transcrição GênicaRESUMO
The aim of the study was to investigate volatile compounds from the aerial parts of Dianthus acicularis of the genus Dianthus of the family Caryophyllaceae grown wild in Northern Kazakhstan for the first time. D. acicularis is a typical Trans-Volga-Kazakhstani endemic. D. acicularis has high resistance to the bacterial wilt, a serious disease caused by Burkholderia caryophylli. The qualitative and quantitative compositions of the specimens of the essential oils were analysed by the method of GC-MS. The main constituents of D. acicularis essential oil were methyl ketones - 2-pentadecanone (26.9-32.2%) and 2-tridecanone (4.7-17.7%), identified for the first time in the Dianthus genus. The methyl ketone activity provides protection of the plants from herbivores and fungal pathogens. One can suppose that the presence of 2-pentadecanone and 2-tridecanone in the essential oil of carnation coniferous provides its resistance to different insects and pathogens, including the resistance to the bacterial wilt.
Assuntos
Dianthus/química , Óleos Voláteis/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/farmacologia , Insetos , Cazaquistão , Cetonas , Doenças das PlantasRESUMO
BACKGROUND: In our screening programme for new agrochemicals from wild plants, the essential oil of Tetradium glabrifolium (Champ. ex Benth.) T.G. Hartley fruits was found to possess strong larvicidal activity against the Asian tiger mosquito, Aedes albopictus L. The essential oil was extracted via hydrodistillation, and the constituents were determined by GC-MS analysis. The active compounds were isolated and identified by bioassay-directed fractionation. RESULTS: GC-MS analyses revealed the presence of 19 components with 2-tridecanone (43.38%), 2-undecanone (24.09%), D-limonene (13.01%), caryophyllene (5.04%) and ß-elemene (4.07%) being the major constituents. Bioactivity-directed chromatographic separation of the oil led to the isolation of 2-tridecanone, 2-undecanone and D-limonene as active compounds. The essential oil of T. glabrifolium exhibited larvicidal activity against the early fourth-instar larvae of A. albopictus, with an LC50 value of 8.20 µg mL(-1). The isolated constituent compounds, 2-tridecanone, 2-undecanone and D-limonene, possessed strong larvicidal activity against the early fourth-instar larvae of A. albopictus, with LC50 values of 2.86, 9.95 and 41.75 µg mL(-1) respectively. CONCLUSION: The findings indicated that the essential oil of T. glabrifolium fruits and the three constituents have an excellent potential for use in control of A. albopictus larvae and could be useful in the search for newer, safer and more effective natural compounds as larvicides.
Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Rutaceae/química , Animais , Bioensaio , Frutas/química , Inseticidas/química , Cetonas , Larva/efeitos dos fármacos , Controle de Mosquitos , Óleos Voláteis/química , Óleos de Plantas/químicaRESUMO
Nylanderia fulva (Mayr) has been reported as being able to displace Solenopsis invicta Buren, one of the most aggressive invasive ants in the world. Like S. invicta, N. fulva use chemical secretions in their defense/offense, which may contribute to their observed superior competition ability. In this study, the defensive chemicals of N. fulva workers and their toxicity against S. invicta workers were investigated. Like other formicine ants, N. fulva workers produce formic acid in their poison glands and 2-ketones and alkanes in Dufour glands. Of these, undecane and 2-tridecanone are two principal compounds in the Dufour gland. Topical LD50 values of 2-tridecanone and undecane against S. invicta workers ranged from 18.51 to 24.67 µg/ant and 40.39 to 84.82 µg/ant, respectively. Undecane and 2-tridecanone had significantly higher contact toxicity than formic acid, whereas formic acid had significantly higher fumigation toxicity than undecane and 2-tridecanone. The combination of 2-tridecanone as a contact toxin and formic acid as a fumigant significantly decreased KT50 values when compared to those of individual compounds. N. fulva does not seem unique in terms of the chemistry of its defensive secretion as compared to other formicine ants. However, this ant contained more than two orders of magnitude of formic acid (wt/wt) than other formicine ants and one order of magnitude of 2-tridecanone than the common crazy ant, Paratrechina longicornis (Latreille). The quantity, rather than quality, of the chemical secretion may contribute to the superior competition ability of N. fulva.