Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Immunity ; 46(3): 446-456, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314593

RESUMO

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
2.
FASEB J ; 35(4): e21514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734509

RESUMO

Inflammation is a critical component of many lung diseases including asthma and acute lung injury (ALI). Using high-performance liquid chromatography-mass spectrometry, we quantified the levels of oxysterols in two different murine models of lung diseases. These are lipid mediators derived from cholesterol and known to modulate immunity and inflammation. Interestingly, 25-hydroxycholesterol (25-OHC) was the only oxysterol with altered levels during lung inflammation, and its levels were differently affected according to the model. Therefore, we sought to assess how this oxysterol would affect lung inflammatory responses. In a model of lipopolysaccharide (LPS)-induced acute lung inflammation, 25-OHC levels were increased, and most of the hallmarks of the model (eg, leukocyte recruitment, mRNA expression, and secretion of inflammatory cytokines) were decreased following its intratracheal administration. We also found that, when administered in the lung, 25-OHC is metabolized locally into 25-hydroxycholesterol-3-sulfate and 7α,25-dihydroxycholesterol. Their administration in the lungs did not recapitulate all the effects of 25-OHC. Conversely, in a model of allergic asthma induced by intranasal administration of house dust mites (HDM), 25-OHC levels were decreased, and when intranasally administered, this oxysterol worsened the hallmarks of the model (eg, leukocyte recruitment, tissue remodeling [epithelium thickening and peribranchial fibrosis], and cytokine expression) and induced changes in leukotriene levels. Ex vivo, we found that 25-OHC decreases LPS-induced primary alveolar macrophage activation while having no effect on neutrophil activation. Its sulfated metabolite, 25-hydroxycholesterol-3-sulfate, decreased neutrophil, but not macrophage activation. Taken together, our data support a differential role of 25-OHC in ALI and allergic inflammation models.


Assuntos
Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Oxisteróis/metabolismo , Pneumonia/metabolismo , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos
3.
Future Oncol ; 18(39): 4415-4442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36651359

RESUMO

Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.


Assuntos
Hidroxicolesteróis , Neoplasias , Humanos , Hidroxicolesteróis/metabolismo , Colesterol/metabolismo , Imunidade Inata , Neoplasias/etiologia
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 504-513, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462473

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent metabolic disorder all over the world, and lipid metabolic disorders and inflammation are closely associated and contribute to the pathogenesis of NAFLD. Cholesterol 25-hydroxylase (Ch25h) and its product, 25-hydroxycholesterol (25-HC), play important roles in cholesterol homeostasis and inflammation, but whether Ch25h and 25-HC are involved in NAFLD remains uncertain. In this study, we use Ch25h knockout mice, hepatic cells and liver biopsies to explore the role of Ch25h and 25-HC in lipid metabolism and accumulation in liver, determine the molecular mechanism of lipid accumulation and inflammation influenced by Ch25h and 25-HC, and assess the regulatory effects of Ch25h and 25-HC on human NAFLD. Our results indicate that mice lacking Ch25h have normal cholesterol homeostasis with normal diet, but under the condition of high fat diet (HFD), the mice show higher total cholesterol and triglyceride in serum, and prone to hepatic steatosis. Ch25h deficiency reduces the cholesterol efflux regulated by liver X receptor α (LXRα), increases the synthesis of cholesterol mediated by sterol-regulatory element binding protein 2 (SREBP-2), and increases the activation of NLRP3 inflammasome, therefore promotes hepatic steatosis. Collectively, our data suggest that Ch25h and 25-HC play important roles in lipid metabolism and inflammation, thereby exerting anti-NAFLD functions.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica , Colesterol/metabolismo , Camundongos Knockout , Triglicerídeos/metabolismo
5.
Am J Physiol Endocrinol Metab ; 306(2): E123-30, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24302009

RESUMO

Intracellular lipid accumulation, inflammatory responses, and subsequent apoptosis are the major pathogenic events of metabolic disorders, including atherosclerosis and nonalcoholic fatty liver diseases. Recently, a novel regulatory oxysterol, 5-cholesten-3b, 25-diol 3-sulfate (25HC3S), has been identified, and hydroxysterol sulfotransferase 2B1b (SULT2B1b) has been elucidated as the key enzyme for its biosynthesis from 25-hydroxycholesterol (25HC) via oxysterol sulfation. The product 25HC3S and the substrate 25HC have been shown to coordinately regulate lipid metabolism, inflammatory responses, and cell proliferation in vitro and in vivo. 25HC3S decreases levels of the nuclear liver oxysterol receptor (LXR) and sterol regulatory element-binding proteins (SREBPs), inhibits SREBP processing, subsequently downregulates key enzymes in lipid biosynthesis, decreases intracellular lipid levels in hepatocytes and THP-1-derived macrophages, prevents apoptosis, and promotes cell proliferation in liver tissues. Furthermore, 25HC3S increases nuclear PPARγ and cytosolic IκBα and decreases nuclear NF-κB levels and proinflammatory cytokine expression and secretion when cells are challenged with LPS and TNFα. In contrast to 25HC3S, 25HC, a known LXR ligand, increases nuclear LXR and decreases nuclear PPARs and cytosol IκBα levels. In this review, we summarize our recent findings, including the discovery of the regulatory oxysterol sulfate, its biosynthetic pathway, and its functional mechanism. We also propose that oxysterol sulfation functions as a regulatory signaling pathway.


Assuntos
Ésteres do Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Inflamação/metabolismo , Sulfatases/metabolismo , Animais , Proliferação de Células , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado , Receptores Nucleares Órfãos/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia
6.
J Reprod Immunol ; 161: 104169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016190

RESUMO

Testicular macrophages (TM) are critical for the function of the testis by regulating homeostasis and inflammatory responses. However, the mechanisms by which TM fulfil these roles remain elusive. In this study, we explored the impact of two key testicular microenvironmental factors, namely 25-hydroxycholesterol (25HC), an oxysterol related to sex hormones and macrophage colony-stimulating factor (M-CSF), a factor crucial for macrophage survival and differentiation, on the regulation of the TM phenotype. Specifically, we examined their role in controlling the expression of the transcription factor interferon regulatory factor 7 (Irf7), a factor critical for maintaining the alternative macrophage phenotype. To achieve this, we used an in vitro bone marrow-derived macrophage (BMDM) model as a surrogate for TM to investigate the roles of 25HC and M-CSF in regulating the expression of Irf7 during the polarization of murine TM. M-CSF was identified as the main regulator of Irf7 expression, while 25HC production is a consequence of Irf7 activation in BMDM. In turn, 25HC plays a role in a negative feedback loop on the expression levels of Irf7 in BMDM. Using flow cytometry in Irf7-/- mouse testis the CD64loMHChi TM subpopulation was found to be decreased. Together with lower IL-10 protein levels in Irf7-/- TM this indicates a shift towards an M1-like macrophage profile. In summary, our data indicates that M-CSF could act as an inducer of high Irf7 expression levels in the mouse testis. However, the exact role of the high 25HC concentration in the testis in maintaining the local immune milieu still needs further study.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Testículo , Masculino , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Regulador 7 de Interferon , Macrófagos , Fatores de Transcrição
7.
Pathol Res Pract ; 249: 154783, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37660656

RESUMO

Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.


Assuntos
Esteroide Hidroxilases , Viroses , Humanos , Progressão da Doença
8.
Viral Immunol ; 36(9): 610-616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831916

RESUMO

Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) showed antiviral effects against various viruses in vitro. CH25H expression is regulated in mice by pro-inflammatory cytokine interferons (IFNs) in mice but data on its possible correlation with IFNs in humans are still unclear. We examined gene expression of CH25H, IFN-α, and IFN-ß and serum levels of 25HC in Iranian patients with mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fifty intensive care unit (ICU) patients and outpatients with SARS-CoV-2 and 25 healthy controls were studied. Gene expression of CH25H and relevant inflammatory cytokines was quantified in peripheral blood mononuclear cells by real-time polymerase chain reaction. The expression of CH25H and serum levels of 25HC were significantly higher in ICU patients with SARS-CoV-2. Notably, IFN-α levels increased in healthy controls. However, compared to healthy controls, IFN-ß was considerably higher in outpatients. Finally, statistical analysis shows that no correlation was found between CH25H and IFN-α expression; nevertheless, a lower correlation was found with IFN-ß. The data revealed that CH25H and 25HC levels increase after SARS-CoV-2 infection. In other words, decreased levels of those factors in severe patients compared with mild patients may indicate the importance of their function in controlling the progression of the disease.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Antivirais/farmacologia , Citocinas , Irã (Geográfico) , Leucócitos Mononucleares , SARS-CoV-2 , Replicação Viral , Interferon-alfa , Gravidade do Paciente
9.
mBio ; 13(3): e0067722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35587189

RESUMO

Hepatitis B virus (HBV)-related diseases are among the major diseases that affect millions of people worldwide. These diseases are difficult to eradicate and thus pose a serious global health challenge. There is an urgent need to understand the cross talk mechanism between HBV and the host. Cholesterol-25-hydroxylase (CH25H) and its enzymatic product, 25-hydroxycholesterol (25HC), were previously shown to exhibit effective broad-spectrum antiviral activity. However, the role of CH25H in the regulation of HBV infection and replication remains unclear. The present study reported increased expression of CH25H in HBV-infected patients compared to healthy subjects. Importantly, higher expression of CH25H expression was found to be associated with low HBV replication. Additionally, the present study aimed to identify CH25H mutants, which would lack hydroxylase activity but retain antiviral activity toward HBV infection and replication. Interestingly, it was observed that both CH25H and its mutants interacted with HBx protein and inhibited nuclear translocation of HBx. In particular, CH25H interacted with the C-terminal region of HBx, while transmembrane region 3 of CH25H was found to be critical for CH25H-HBx interaction and inhibition of HBV replication. The study results suggested that 25HC promoted HBV infection but not HBV replication. Thus, the results of the present study suggested the involvement of a dual mechanism in CH25H-mediated regulation of HBV replication. The study clearly demonstrated cross talk between HBV and the host through CH25H-HBx axis. IMPORTANCE The enzymatic product of CH25H, 25-hydroxycholesterol (25HC), has been previously shown to play a critical role in the blockage of the cell-virus fusion in response to viral infection. However, our study indicates a dual role of CH25H in regulating HBV. We find the CH25H-mediated inhibition of HBV replication is independent on its enzyme activity and CH25H binds to HBx and inhibits HBx nucleus translocation. We are interested to find out 25HC promotes HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Esteroide Hidroxilases/metabolismo , Antivirais/farmacologia , Vírus da Hepatite B/genética , Humanos , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral
10.
Cell Mol Gastroenterol Hepatol ; 13(4): 1161-1179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990887

RESUMO

BACKGROUND & AIMS: Cholesterol 25-hydroxylase (Ch25h), converting cholesterol to 25-hydroxycholesterol (25-HC), is critical in modulating cellular lipid metabolism and anti-inflammatory and antiviral activities. However, its role in nonalcoholic fatty liver disease remains unclear. METHODS: Ch25h expression was detected in livers of ob/ob mice and E3 rats fed a high-fat diet (HFD). Gain- or loss-of-function of Ch25h was performed using Ch25h+/+ (wild type [WT]) mice receiving AAV8-Ch25h or Ch25h knockout (Ch25h-/-) mice. WT mice fed an HFD were administered with 25-HC. The Ch25h-LXRα-CYP axis was measured in primary hepatocytes isolated from WT and Ch25h-/- mice. RESULTS: We found that Ch25h level was decreased in livers of ob/ob mice and E3 rats fed an HFD. Ch25h-/- mice fed an HFD showed aggravated fatty liver and decreased level of cytochrome P450 7A1 (CYP7A1), in comparison with their WT littermates. RNA-seq analysis revealed that the differentially expressed genes in livers of HFD-fed Ch25h-/- mice were involved in pathways of positive regulation of lipid metabolic process, steroid metabolic process, cholesterol metabolic process, and bile acid biosynthetic process. As gain-of-function experiments, WT mice receiving AAV8-Ch25h or 25-HC showed alleviated NAFLD, when compared with the control group receiving AAV8-control or vehicle control. Consistently, Ch25h overexpression significantly elevated the levels of primary and secondary bile acids and CYP7A1 but decreased those of small heterodimer partner and FGFR4. CONCLUSIONS: Elevated levels of Ch25h and its enzymatic product 25-HC alleviate HFD-induced hepatic steatosis via regulating enterohepatic circulation of bile acids. The underlying mechanism involves 25-HC activation of CYP7A1 via liver X receptor. These data suggest that targeting Ch25h or 25-HC may have therapeutic advantages against nonalcoholic fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Ratos , Esteroide Hidroxilases
11.
Vet Microbiol ; 256: 109038, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33845332

RESUMO

Cholesterol 25-hydroxylase (CH25 H), as a host restriction factor, has been reported to take a broad-spectrum antiviral effect. However, the role of CH25H in Senecavirus A (SVA) infection remains unknown. In this study, we first demonstrate that overexpression of CH25H inhibits SVA replication. Consistently, knockdown or knockout of the endogens CH25H promotes SVA infection. Further, the anti-SVA effect of 25-hydroxycholesterol (25HC), which is the product of CH25H, operates via inhibition of viral attachment and replication. On the other hand, the CH25H mutant (CH25H-M) lacking hydroxylase activity still restricts SVA infection, which can selectively interact and degrade SVA 3A protein via the ubiquitin-proteasome manner. Altogether, these results suggest that CH25H has an antiviral function in SVA infection and provides an alternative manner to control SVA.


Assuntos
Infecções por Picornaviridae/prevenção & controle , Picornaviridae/fisiologia , Esteroide Hidroxilases/metabolismo , Replicação Viral , Animais , Antivirais , Linhagem Celular , Cricetinae , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Mutação , Infecções por Picornaviridae/virologia , Esteroide Hidroxilases/genética
12.
Virol Sin ; 36(5): 1197-1209, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057681

RESUMO

Cholesterol-25-hydroxylase (CH25H) and its enzymatic product 25-hydroxycholesterol (25HC) exert broadly antiviral activity including inhibiting HIV-1 infection. However, their antiviral immunity and therapeutic efficacy in a nonhuman primate model are unknown. Here, we report that the regimen of 25HC combined with antiretroviral therapy (ART), provides profound immunological modulation towards inhibiting viral replication in chronically SIVmac239-infected rhesus macaques (RMs). Compared to the ART alone, this regimen more effectively controlled SIV replication, enhanced SIV-specific cellular immune responses, restored the ratio of CD4/CD8 cells, reversed the hyperactivation state of CD4+ T cells, and inhibited the secretion of proinflammatory cytokines by CD4+ and CD8+ T lymphocytes in chronically SIV-infected RMs. Furthermore, the in vivo safety and the preliminary pharmacokinetics of the 25HC compound were assessed in this RM model. Taken together, these assessments help explain the profound relationship between cholesterol metabolism, immune modulation, and antiviral activities by 25HC. These results provide insight for developing novel therapeutic drug candidates against HIV-1 infection and other related diseases.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Hidroxicolesteróis , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico
13.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831255

RESUMO

Acetaminophen (APAP) overdose is one of the most frequent causes of acute liver failure (ALF). N-acetylcysteine (NAC) is currently being used as part of the standard care in the clinic but its usage has been limited in severe cases, in which liver transplantation becomes the only treatment option. Therefore, there still is a need for a specific and effective therapy for APAP induced ALF. In the current study, we have demonstrated that treatment with 25-Hydroxycholesterol 3-Sulfate (25HC3S) not only significantly reduced mortality but also decreased the plasma levels of liver injury markers, including LDH, AST, and ALT, in APAP overdosed mouse models. 25HC3S also decreased the expression of those genes involved in cell apoptosis, stabilized mitochondrial polarization, and significantly decreased the levels of oxidants, malondialdehyde (MDA), and reactive oxygen species (ROS). Whole genome bisulfite sequencing analysis showed that 25HC3S increased demethylation of 5mCpG in key promoter regions and thereby increased the expression of those genes involved in MAPK-ERK and PI3K-Akt signaling pathways. We concluded that 25HC3S may alleviate APAP induced liver injury via up-regulating the master signaling pathways and maintaining mitochondrial membrane polarization. The results suggest that 25HC3S treatment facilitates the recovery and significantly decreases the mortality of APAP induced acute liver injury and has a synergistic effect with NAC in propylene glycol (PG) for the injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ésteres do Colesterol/uso terapêutico , Hidroxicolesteróis/uso terapêutico , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Ésteres do Colesterol/farmacologia , Ilhas de CpG/genética , Desmetilação do DNA , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Especificidade de Órgãos/efeitos dos fármacos , Oxidantes/metabolismo
14.
Virol Sin ; 36(5): 1210-1219, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34061318

RESUMO

Cholesterol-25-hydroxylase (CH25H) is a membrane protein associated with endoplasmic reticulum, and it is an interferon-stimulated factor regulated by interferon. CH25H catalyzes cholesterol to produce 25-hydroxycholesterol (25HC) by adding a second hydroxyl to the 25th carbon atom of cholesterol. Recent studies have shown that both CH25H and 25HC could inhibit the replication of many viruses. In this study, we found that ectopic expression of CH25H in HEK-293T and BHK-21 cell lines could inhibit the replication of Seneca Valley virus (SVV) and that there was no species difference. On the other hand, the knockdown of CH25H could enhance the replication of SVV in HEK-293T and BHK-21 cells, indicating the importance of CH25H. To some extent, the CH25H mutant without hydroxylase activity also lost its ability to inhibit SVV amplification. Further studies demonstrated that 25HC was involved in the entire life cycle of SVV, especially in repressing its adsorption process. This study reveals that CH25H exerts the advantage of innate immunity mainly by producing 25HC to block virion adsorption.


Assuntos
Internalização do Vírus , Replicação Viral , Adsorção , Hidroxicolesteróis , Picornaviridae
15.
Viruses ; 12(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640529

RESUMO

With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Imunidade/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Esteroide Hidroxilases/farmacologia , Animais , Humanos , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos
16.
Vet Microbiol ; 245: 108658, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32456829

RESUMO

Cholesterol-25-hydroxylase (CH25 H) is a reticulum-associated membrane protein induced by an important interferon-stimulating gene (ISG) and can significantly inhibit some virus replication. But the effect of CH25H on encephalomyocarditis virus (EMCV) is still not clear. In this study, we found that EMCV infection increases significantly the endogenous CH25H expression in BHK-21 and N2a cells. CH25H and cholesterol catalytic oxidation product 25-hydroxycholesterol (25HC) obviously inhibits EMCV infection by inhibiting the viral penetration. But the CH25H mutant lacking hydroxylase activity repairs the ability to inhibit the viral replication. Meanwhile, ß-cyclodextrin crystalline as a cholesterol inhibitor significantly decreases the viral replication. In addition, CH25H can selectively interact and degrade the viral RNA-Dependent RNA Polymerase-3D protein by independent on the association of proteasome, lysosome and caspase manner. It provides new insights into the interplay mechanisms between CH25H and non-enveloped single-stranded positive RNA viruses.


Assuntos
Vírus da Encefalomiocardite/fisiologia , Hidroxicolesteróis/metabolismo , Esteroide Hidroxilases/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Células HEK293 , Humanos , Internalização do Vírus
17.
Biochem Biophys Rep ; 22: 100754, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32258442

RESUMO

The oxysterol 25-hydroxycholesterol (25-HC) has diverse physiological activities, including the ability to inhibit anchorage-independent growth of colorectal cancer cells. Here, we found that a polyamine synthesis inhibitor, DFMO, prevented 25-HC-induced apoptosis in non-anchored colorectal cancer DLD-1 cells. Additionally, we found that the spermine synthesis inhibitor APCHA also inhibited 25-HC-induced apoptosis in DLD-1 spheroids. Inhibiting the maturation of SREBP2, a critical regulator of cholesterol synthesis, reversed the effects of APCHA. SREBP2 knockdown also abolished the ability of APCHA to counteract 25-HC activity. Furthermore, APCHA induced SREBP2 maturation and upregulated its transcriptional activity, indicating that altered polyamine metabolism can increase SREBP2 activity and block 25-HC-induced apoptosis in spheroids. These results suggest that crosstalk between polyamine metabolism and cholesterol synthetic pathways via SREBP2 governs the proliferative and malignant properties of colorectal cancer cells.

18.
Viruses ; 11(2)2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682775

RESUMO

Cholesterol, an essential component of mammalian cells, is also an important factor in the replicative-cycles of several human and animal viruses. The oxysterol, 25-hydroxycholesterol, is produced from cholesterol by the enzyme, cholesterol 25-hydroxylase. 25-hydroxycholesterol (25-HC) has been shown to have anti-viral activities against a wide range of viruses, including a range of positive-sense RNA viruses. In this study, we have investigated the role of 25-HC in norovirus replication using murine norovirus (MNV) as a model system. As a control, we employed herpes simplex virus-1 (HSV-1), a pathogen previously shown to be inhibited by 25-HC. Consistent with previous studies, 25-HC inhibited HSV-1 replication in the MNV-susceptible cell line, RAW264.7. Treating RAW264.7 cells with sub-cytotoxic concentrations of 25-HC reduced the MNV titers. However, other sterols such as cholesterol or the oxysterol, 22-S-hydroxycholesterol (22-S-HC), did not inhibit MNV replication. Moreover, treating MNV-infected RAW264.7 cells with 25-HC-stimulated caspase 3/7 activity, which leads to enhanced apoptosis and increased cell death. Our study adds noroviruses to the list of viruses inhibited by 25-HC and begins to offer insights into the mechanism behind this inhibition.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Norovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Apoptose , Caspase 3/metabolismo , Macrófagos/virologia , Camundongos , Norovirus/fisiologia , Células RAW 264.7
19.
Neuroscience ; 408: 349-360, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026565

RESUMO

Oxysterol derived from cholesterol metabolism is involved in the inflammatory activation, and consequently in development of major chronic diseases. Multiple cytokines have been found to induce the expression of cholesterol metabolism-related enzymes. Several studies have shown that the protein level of cholesterol-25-hydroxylase (CH25H) is remarkably increased in response to injury of central nervous system (CNS), but little is known about the mechanisms of cytokine-induced expression of CH25H in specific cell types, and the resultant effects. In the present study, we demonstrated that ch25h expression was significantly upregulated in the astrocytes of rat injured spinal cord, in parallel with those of MIF. Administration of MIF inhibitor 4-IPP in the lesion sites attenuated injury-induced ch25h expression. MIF facilitated ch25h expression of astrocytes through interaction with CD74 membrane receptor, which in turn promoted production of chemokines, as identified by transcriptome profiles. MIF-induced release of oxysterol 25-hydroxycholesterol (25-HC) from astrocytes affects cell migration, but inhibited cell viability in dose-dependent manner, suggesting that MIF aggravates progressive neuropathology through regulation of cholesterol metabolism following CNS injury. These results have provided a novel mechanism and a potential therapeutic strategy for injured CNS.


Assuntos
Astrócitos/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/farmacologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Esteroide Hidroxilases/metabolismo , Animais , Astrócitos/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Pirimidinas/farmacologia , Ratos , Medula Espinal/metabolismo
20.
Viruses ; 11(3)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813555

RESUMO

African swine fever (ASF) is a hemorrhagic fever of wild and domestic pigs with a high rate of mortality. Originally endemic in Africa, this disease is currently disseminating in Europe and China, causing a large socioeconomic impact. ASF is caused by a DNA virus, African swine fever virus (ASFV). There is no vaccine available against ASFV, limiting the options for disease control. ASFV reorganizes intracellular membranes to generate viral factories (VFs) in order to amplify its genome. However, little is known about the process involved in the formation of these viral replication organelles. Membrane contact sites (MCSs) allow nonvesicular lipids and ion exchange between organelles. Lipid exchange to form VFs apparently requires a number of proteins at MCSs, such as the oxysterol-binding protein (OSBP), the acyl-coenzyme A binding domain containing 3 (ACBD3) and the phosphatidylinositol-phosphate-4-kinase III beta (PI4Kß). Itraconazole (ITZ) is an antifungal agent that targets sterol-transport molecules such as OSBP and OSBP-related protein 4 (ORP4). 25-Hydroxycholesterol (25-HC) inhibits lipid transport by high affinity binding OSBP. In this work, we analyzed the antiviral function of ITZ and 25-HC against ASFV in Vero cell cultures using the cell-adapted Ba71V isolate. ITZ and 25-HC decreased significantly ASFV replication. Our study revealed OSBP distribution in cytoplasmic membranes in uninfected Vero cells and to the periphery of VFs in infected cells. In addition, we showed that OSBP and OSBP-related proteins, PI4Kß and ACBD3 were recruited to VFs in the context ASFV infection.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/metabolismo , Interações entre Hospedeiro e Microrganismos , Metabolismo dos Lipídeos , Ligação Viral , Proteínas Adaptadoras de Transdução de Sinal/genética , Febre Suína Africana , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Genoma Viral , Células HeLa , Humanos , Hidroxicolesteróis/farmacologia , Itraconazol/farmacologia , Proteínas de Membrana/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Esteroides/efeitos dos fármacos , Suínos , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa