Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402272, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148206

RESUMO

Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cm⁻2 over 11 h) and super stable (64 h at 150 mA cm⁻2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long-term stability at high-current operation.

2.
Chemistry ; 29(9): e202203244, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534440

RESUMO

Host-guest interactions are of paramount importance in supramolecular chemistry and in a wide range of applications. Particularly well known is the ability of cucurbit[n]urils (CB[n]) to selectively host small molecules. We show that the charge transfer and complexation capabilities of CB[n] are retained on the surface of 2D transition metal dichalcogenides (TMDs), allowing the development of efficient electrochemical sensing platforms. We unveil the mechanisms of host-guest recognition between the MoS2 -CB[8] hybrid interface and melatonin (MLT), an important molecular regulator of vital constants in vertebrates. We find that CB[8] on MoS2 organizes the receptor portals perpendicularly to the surface, facilitating MLT complexation. This advantageous adsorption geometry is specific to TMDs and favours MLT electro-oxidation, as opposed to other 2D platforms like graphene, where one receptor portal is closed. This study rationalises the cooperative interaction in 2D hybrid systems to improve the efficiency and selectivity of electrochemical sensing platforms.

3.
Nanotechnology ; 34(14)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36548988

RESUMO

Plasmonic nanocrystals (NCs) assisted phase transition of two-dimensional molybdenum disulfide (2D-MoS2) unlashes numerous opportunities in the fields of energy harvesting via electrocatalysis and photoelectrocatalysis by enhancing electronic conductivity, increasing catalytic active sites, lowering Gibbs free energy for hydrogen adsorption and desorption, etc. Here, we report the synthesis of faceted gold pentagonal bi-pyramidal (Au-PBP) nanocrystals (NC) for efficient plasmon-induced phase transition (from 2 H to 1 T phase) in chemical vapor deposited 2D-MoS2. The as-developed Au-PBP NC with the increased number of corners and edges showed an enhanced multi-modal plasmonic effect under light irradiations. The overpotential of hydrogen evolution reaction (HER) was reduced by 61 mV, whereas the Tafel slope decreased by 23.7 mV/dec on photoexcitation of the Au-PBP@MoS2hybrid catalyst. The enhanced performance can be attributed to the light-induced 2H to 1 T phase transition of 2D-MoS2, increased active sites, reduced Gibbs free energy, efficient charge separation, change in surface potential, and improved electrical conductivity of 2D-MoS2film. From density functional theory (DFT) calculations, we obtain a significant change in the electronic properties of 2D-MoS2(i.e. work function, surface chemical potential, and the density of states), which was primarily due to the plasmonic interactions and exchange-interactions between the Au-PBP nanocrystals and monolayer 2D-MoS2, thereby enhancing the phase transition and improving the surface properties. This work would lay out finding assorted routes to explore more complex nanocrystals-based multipolar plasmonic NC to escalate the HER activity of 2D-MoS2and other 2D transition metal dichalcogenides.

4.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445624

RESUMO

The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV-visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized-especially in the case of WS2 as compared to MoS2-and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications.


Assuntos
Nanoestruturas , Elementos de Transição , Solventes , Molibdênio/química , Elementos de Transição/química , Nanoestruturas/química
5.
Chemistry ; 28(47): e202201386, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730703

RESUMO

The precise discrimination of microbes based on family, class and drug resistivity is essential for the early diagnosis of infectious diseases. Information about the type and strength of drug resistivity can help the analyst to prescribe a suitable antibiotic at the proper dosage to completely eradicate microbes without giving them a chance to gain further resistance. Herein, we propose a sensor array based on the use of cationic two-dimensional MoS2 units and green fluorescence protein as building blocks. Cationic surfaces of receptors with various functionality were suitable for tunable interaction with anionic surfaces of microbes. The array successfully discriminates six different bacterial strains. The versatile ability of the receptors to bind with the wild-type as well as the corresponding ampicillin-resistant strain contributed significantly to rapid detection with high sensitivity. The optimized array was able to classify five different types and three different extents of drug-resistant variants of Escherichia coli by using bacteria cells and lysates. Finally, we have introduced the cross identification method using both bacteria cells and lysates and we found a great enhancement of detection in sensitivity and accuracy. This is the first report of this approach, which can be extended to many other methods for better accuracy in array-based detection.


Assuntos
Infecções por Escherichia coli , Molibdênio , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana , Escherichia coli , Humanos
6.
Nanotechnology ; 33(47)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944420

RESUMO

Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.

7.
Small ; 16(45): e2005217, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33035390

RESUMO

Optoelectronic-neuromorphic transistors are vital for next-generation nanoscale brain-like computational systems. However, the hardware implementation of optoelectronic-neuromorphic devices, which are based on conventional transistor architecture, faces serious challenges with respect to the synchronous processing of photoelectric information. This is because mono-semiconductor material cannot absorb adequate light to ensure efficient light-matter interactions. In this work, a novel neuromorphic-photoelectric device of vertical van der Waals heterojunction phototransistors based on a colloidal 0D-CsPbBr3 -quantum-dots/2D-MoS2 heterojunction channel is proposed using a polymer ion gel electrolyte as the gate dielectric. A highly efficient photocarrier transport interface is established by introducing colloidal perovskite quantum dots with excellent light absorption capabilities on the 2D-layered MoS2 semiconductor with strong carrier transport abilities. The device exhibits not only high photoresponsivity but also fundamental synaptic characteristics, such as excitatory postsynaptic current, paired-pulse facilitation, dynamic temporal filter, and light-tunable synaptic plasticity. More importantly, efficiency-adjustable photoelectronic Pavlovian conditioning and photoelectronic hybrid neuronal coding behaviors can be successfully implemented using the optical and electrical synergy approach. The results suggest that the proposed device has potential for applications associated with next-generation brain-like photoelectronic human-computer interactions and cognitive systems.

8.
Nanotechnology ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036013

RESUMO

High-quality, ultrathin 2D- MoS2 layers with large area were grown on SiO2/Si substrates by using chemical vapor deposition (CVD) at elevated temperatures. The growth precursors (MoO3 and S) were placed separately inside the double zone furnace to control the growth parameters individually for better flexibility in the growth process. In this study, it was found that the shape and edge structure of the evolved MoS2 flakes were significantly influenced by the chemical potential of the Mo and S precursor concentration. In keeping with the concentration gradient of Mo precursor (MoO3) on the substrate surface, the shape of MoS2 flakes changed from hexagonal to truncated triangle and then to triangular shapes owing to the Mo-rich to S-rich conditions. The surface roughness and thickness of the differently shaped MoS2 flakes were studied by using an atomic force microscope (AFM). Additionally, Raman and photoluminescence (PL) techniques were employed to characterize the crystalline quality, a number of grown layers and optical performance of the as-grown MoS2 layers. Auger electron spectroscopy (AES) analysis and scanning electron microscopy (SEM) confirmed that the equilibrium crystal shape of the MoS2 was hexagonal under Mo rich conditions. However, the shape of the MoS2 crystal changed to a triangle under S rich conditions. Furthermore, the influence of chemical potential on the edge structure of the monolayer MoS2 and its effect on the equilibrium shape of the crystal were studied.

9.
Chemistry ; 24(52): 13871-13878, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29932251

RESUMO

Metal-semiconductor heterojunctions play a vital role in photocatalysis, yet their preparation can be exceedingly difficult. The heterojunction helps not only to separate the charges and inhibit recombination processes but also to transfer the photogenerated electron/hole to the reacting molecule. Here, we demonstrate 1T (metallic)-2H (semiconducting) phase boundaries intrinsic to individual sheets of chemically exfoliated 2D-MoS2 can serve as heterojunctions for enhanced photocatalysis in comparison to only semiconducting phase. Due to the abundance of heterojunctions in these multiphasic materials, chemically exfoliated 2D-MoS2 provides improved stability and transfer of photogenerated charges to the reactants, giving better yield. We demonstrate that this easy to synthesize material is an effective photocatalyst for the aerobic oxidative coupling of amines to imines under visible light irradiation. Given its broad applications, we believe mixed phase 2D-MoS2 can be of interest to several industrial synthetic applications related to semiconductor-based photocatalysis. As an added advantage, this heterogeneous photocatalyst can be recycled for several times up to five cycles without any significant loss in the activity.

10.
Mikrochim Acta ; 185(3): 162, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29594615

RESUMO

Two-dimensional (2D) MoS2 is found to possess different affinities for ssDNA and dsDNA. This finding is exploited in an amperometric aptamer-based method for the determination of the mycotoxin ochratoxin A (OTA). Initially, a dsDNA probe (formatted through the hybridization of OTA-aptamer with an auxiliary DNA) is self-assembled on a gold electrode. Upon introduction of OTA, it will bind to the aptamer and cause the unwinding of dsDNA, while the auxiliary DNA (with single-stranded structure) remains on the electrode. Since the affinity of 2D MoS2 for ssDNA is considerably larger than that for dsDNA, it will be adsorbed on the electrode by binding to the auxiliary DNA. Notably, 2D MoS2 possesses peroxidase-like activity. Hence, it can catalyze the amplification of electrochemical signal of the hydroquinone/benzoquinone redox system. Under optimal conditions, the amperometric signal (best measured at -0.2 V vs. SCE) increases with increasing OTA concentration in the range from 0.5 pg·mL-1 to 1.0 ng·mL-1, with a lower detection limit of 0.23 pg·mL-1. The method was applied to the determination of OTA in spiked red wine. Graphical abstract Herein we construct a convenient electrochemical aptasensor for sensitive monitor of ochratoxin A by using 2D MoS2 as a nano-binder to catalyze the amplification of electrochemical signal from hydroquinone/benzoquinone system.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , Dissulfetos/química , Molibdênio/química , Ocratoxinas/análise , Sequência de Bases , DNA de Cadeia Simples/genética , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Peróxido de Hidrogênio/química , Hidroquinonas/química , Limite de Detecção , Hibridização de Ácido Nucleico , Vinho/análise
11.
ACS Appl Mater Interfaces ; 16(30): 39673-39682, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39022803

RESUMO

Transient electronics technology has enabled the programmed disintegration of functional devices, paving the way for environmentally sustainable management of electronic wastes as well as facilitating the exploration of novel device concepts. While a variety of inorganic and/or organic materials have been employed as media to introduce transient characteristics in electronic devices, they have been mainly limited to function as passive device components. Herein, we report that calcium (Ca) alginate, a natural biopolymer, exhibits multifunctionalities of introducing light-triggered transient characteristics as well as constituting active components in electronic devices integrated with two-dimensional (2D) molybdenum disulfide (MoS2) layers. Ca2+ ions-based alginate electrolyte films are prepared through hydrolysis reactions and are subsequently incorporated with riboflavin, a natural photosensitizer, for the light-driven dissolution of 2D MoS2 layers. The alginate films exhibit strain-sensitive triboelectricity, confirming the presence of abundant mobile Ca2+ ions, which enables them to be active components of 2D MoS2 field-effect transistors (FETs) functioning as electrolyte top-gates. The alginate-integrated 2D MoS2 FETs display intriguing transient characteristics of spontaneous degradation upon ultraviolet-to-visible light illumination as well as water exposure. Such transient characteristics are demonstrated even in ambient conditions with natural sunlight, highlighting the versatility of the developed approach. This study emphasizes a relatively unexplored aspect of combining naturally abundant polymers with emerging near atom-thickness semiconductors toward realizing unconventional and transformative device functionalities.

12.
ACS Nano ; 18(24): 16041-16050, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833631

RESUMO

Lithium-sulfur (Li-S) batteries are a promising high-energy-density technology for next-generation energy storage but suffer from an inadequate lifespan. The poor cycle life of Li-S batteries stems from their commonly adopted catholyte-mediated operating mechanism, where the shuttling of dissolved polysulfides results in active material loss on the sulfur cathode and surface corrosion on the lithium anode. Here, we report in situ formation of a quasi-solid-state electrolyte (QSSE) on the metallic 1T phase molybdenum disulfide (MoS2) host that extends the lifetime of Li-S batteries. We find that the metallic 1T phase MoS2 host is able to initiate the ring-opening polymerization of 1,3-dioxolane (DOL), forming an integrated QSSE inside batteries. Nuclear magnetic resonance analysis reveals that the QSSE consists of ∼13% liquid DOL in a solid polymer matrix. The QSSE efficiently mediates sulfur redox reactions through dissolution-conversion chemistry while simultaneously suppressing polysulfide shuttling. Therefore, while ensuring high sulfur utilization, it avoids degradation of both electrodes, as well as the concomitant electrolyte consumption, leading to enhanced cycling stability. Under a practical lean electrolyte condition (electrolyte-to-sulfur ratio = 2 µL mg-1), Li-S pouch cell batteries with the QSSE demonstrate a capacity retention of 80.7% after 200 cycles, much superior to conventional liquid electrolyte cells that fail within 70 cycles. The QSSE also enables Li-S pouch cell batteries to operate across a wider temperature range (5 to 45 °C), together with improved safety under mechanical damage.

13.
ACS Appl Mater Interfaces ; 15(19): 23564-23572, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130097

RESUMO

2D MoS2 attracts increasing attention for its application in flexible electronics and photonic devices. For 2D material optoelectronic devices, the light absorption of the molecularly thin 2D absorber would be one of the key limiting factors in device efficiency, and conventional photon management techniques are not necessarily compatible with them. In this study, we show two semimetal composite nanostructures deposited on 2D MoS2 for synergistic photon management and strain-induced band gap engineering: (1) the pseudo-periodic Sn nanodots, (2) the conductive SnOx (x < 1) core-shell nanoneedle structures. Without sophisticated nanolithography, both nanostructures are self-assembled from physical vapor deposition. Optical absorption enhancement spans from the visible to the near-infrared regime. 2D MoS2 achieves >8× optical absorption enhancement at λ = 700-940 nm and 3-4× at λ = 500-660 nm under Sn nanodots, and 20-30× at λ = 700-900 nm under SnOx (x < 1) nanoneedles. The enhanced absorption in MoS2 results from strong near-field enhancement and reduced MoS2 band gap due to the tensile strain induced by the Sn nanostructures, as confirmed by Raman and photoluminescence spectroscopy. Especially, we demonstrate that up to 3.5% biaxial tensile strain is introduced to 2D MoS2 using conductive nanoneedle-structured SnOx (x < 1), which reduces the band gap by ∼0.35 eV to further enhance light absorption at longer wavelengths. To the best of our knowledge, this is the first demonstration of a synergistic triple-functional photon management, stressor, and conductive electrode layer on 2D MoS2. Such synergistic photon management and band gap engineering approach for extended spectral response can be further applied to other 2D materials for future 2D photonic devices.

14.
Adv Mater ; : e2304808, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505096

RESUMO

Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2 ), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2 , with a controllable sulfur vacancy density of up to 3.35 × 1014  cm-2 . This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2 -K-H2 O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2 ) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2 SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.

15.
Small Methods ; : e2301206, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059756

RESUMO

In recent years, there have been significant advancements in Al-ion battery development, resulting in high voltage and capacity. Traditionally, only carbon-based materials with layered structures and strong bonding capabilities can deliver superior performance. However, most other materials exhibited low discharge voltages of 1.4 V, especially in aqueous Al-ion battery systems lacking anion intercalation. Thus, the development of high-voltage cathode materials has become crucial. This study introduces 2D MoS2 as a high-performance cathode for aqueous Al-ion batteries. The material's interlayer structure enables the intercalation of AlCl4 - anions, resulting in high-voltage intercalation. The resulting battery achieved a high voltage of 1.8 V with a capacity of 750 mAh g-1 , contributing to a high energy density of 890 Wh kg-1 and an impressive retention rate of ≈100% after 200 cycles. This research not only sheds light on the high-voltage anion-intercalation mechanism of MoS2 but also paves the way for the further development of advanced cathode materials in the field of Al-ion batteries. By demonstrating the potential of using 2D MoS2 as a cathode material, this finding can lead to the development of more efficient and innovative energy storage technologies, ultimately contributing to a sustainable and green energy future.

16.
Micromachines (Basel) ; 14(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37630069

RESUMO

The zeolitic imidazolate framework-67 (ZIF-67) adsorbent and its composites are known to effectively remove organic dyes from aqueous environments. Here, we report a unique crystalline MoS2@ZIF-67 nanocomposite adsorbent for the efficient removal of methyl orange (MO) dye from an aqueous medium. In situ synthetic techniques were used to fabricate a well-crystalline MoS2@ZIF-67 nanocomposite, which was then discovered to be a superior adsorbent to its constituents. The successful synthesis of the nanocomposite was confirmed using XRD, EDX, FTIR, and SEM. The MoS2@ZIF-67 nanocomposite exhibited faster adsorption kinetics and higher dye removal efficiency compared with its constituents. The adsorption kinetic data matched well with the pseudo-second-order model, which signifies that the MO adsorption on the nanocomposite is a chemically driven process. The Langmuir model successfully illustrated the MO dye adsorption on the nanocomposite through comparing the real data with adsorption isotherm models. However, it appears that the Freundlich adsorption isotherm model was also in competition with the Langmuir model. According to the acquired thermodynamics parameters, the adsorption of MO on the MoS2@ZIF-67 nanocomposite surface was determined to be spontaneous and exothermic. The findings of this research open an avenue for using the MoS2@ZIF-67 nanocomposite to efficiently remove organic dyes from wastewater efflux.

17.
Anal Chim Acta ; 1252: 341036, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-36935147

RESUMO

Molybdenum disulfide (MoS2) nanolayers are one of the most promising two-dimensional (2D) nanomaterials for constructing next-generation field-effect transistor (FET) biosensors. In this article, we report an ultrasensitive FET biosensor that integrates a novel format of 2D MoS2, vertically-aligned MoS2 nanolayers (VAMNs), as the channel material for label-free detection of the prostate-specific antigen (PSA). The developed VAMNs-based FET biosensor shows two distinctive advantages. First, the VAMNs can be facilely grown using the conventional chemical vapor deposition (CVD) method, permitting easy fabrication and potential mass device production. Second, the unique advantage of the VAMNs for biosensor development lies in its abundant surface-exposed active edge sites that possess a high binding affinity with thiol-based linkers, which overcomes the challenge of molecule functionalization on the conventional planar MoS2 nanolayers. The high binding affinity between 11-mercaptoundecanoic acid and the VAMNs was demonstrated through experimental surface characterization and theoretical calculations via density functional theory. The FET biosensor allows rapid (within 20 min) and ultrasensitive PSA detection in human serum with simple operations (limit of detection: 800 fg mL-1). This FET biosensor offers excellent features such as ultrahigh sensitivity, ease of fabrication, and short assay time, and thereby possesses significant potential for early-stage diagnosis of life-threatening diseases.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Masculino , Humanos , Molibdênio/química , Antígeno Prostático Específico , Domínio Catalítico , Técnicas Biossensoriais/métodos , Nanoestruturas/química
18.
ACS Nano ; 16(6): 9452-9460, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35617052

RESUMO

Two-dimensional (2D) dilute magnetic semiconductors (DMSs) are attractive material platforms for applications in multifunctional nanospintronics due to the prospect of embedding controllable magnetic order within nanoscale semiconductors. Identifying candidate host material and dopant systems requires consideration of doping formation energies, magnetic ordering, and the tendency for dopants to form clustered domains. In this work, we consider the defect thermodynamics and the dilute magnetic properties across charge states of 2D-MoS2 and 2D-WS2 with Mn magnetic dopants as candidate systems for 2D-DMSs. Using hybrid density functional calculations, we study the magnetic and electronic properties of these systems across configurations with thermodynamically favorable defects: 2D-MoS2 doped with Mn atoms at sulfur site (MnS), at two Mo sites (2MnMo), on top of a Mo atom (Mn-top), and at a Mo site (MnMo). While the majority of the Mn-defect complexes provide trap states, MnMo and MnW are amphoteric, although previously predicted to be donor defects. The impact of cluster formation of these amphoteric defects on magnetic ordering is also considered; both MnMo-MnMo (2Mn2Mo) and MnW-MnW (2Mn2W) clusters are found to be stable in ferromagnetic (FM) ordering. Interestingly, we observed the defect charge state dependent magnetic behavior of 2Mn2Mo and 2Mn2W clusters in 2D-TMDs. We investigate that the FM coupling of 2Mn2Mo and 2Mn2W clusters is stable in only a neutral charge state; however, the antiferromagnetic (AFM) coupling is stable in the +1 charge state. 2Mn2Mo clusters provide shallow donor levels in AFM coupling and deep donor levels in FM coupling. 2Mn2W clusters lead to trap states in the FM and AFM coupling. We demonstrate the AFM to FM phase transition at a critical electron density nce = 3.5 × 1013 cm-2 in 2D-MoS2 and 2D-WS2. At a 1.85% concentration of Mn, we calculate the Curie temperature of 580 K in the mean-field approximation.

19.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432355

RESUMO

Aqueous rechargeable zinc (Zn)−air batteries have recently attracted extensive research interest due to their low cost, environmental benignity, safety, and high energy density. However, the sluggish kinetics of oxygen (O2) evolution reaction (OER) and the oxygen reduction reaction (ORR) of cathode catalysts in the batteries result in the high over-potential that impedes the practical application of Zn−air batteries. Here, we report a stable rechargeable aqueous Zn−air battery by use of a heterogeneous two-dimensional molybdenum sulfide (2D MoS2) cathode catalyst that consists of a heterogeneous interface and defects-embedded active edge sites. Compared to commercial Pt/C-RuO2, the low cost MoS2 cathode catalyst shows decent oxygen evolution and acceptable oxygen reduction catalytic activity. The assembled aqueous Zn−air battery using hybrid MoS2 catalysts demonstrates a specific capacity of 330 mAh g−1 and a durability of 500 cycles (~180 h) at 0.5 mA cm−2. In particular, the hybrid MoS2 catalysts outperform commercial Pt/C in the practically meaningful high-current region (>5 mA cm−2). This work paves the way for research on improving the performance of aqueous Zn−air batteries by constructing their own heterogeneous surfaces or interfaces instead of constructing bifunctional catalysts by compounding other materials.

20.
ACS Appl Mater Interfaces ; 14(25): 28900-28910, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35714283

RESUMO

The electrocatalytic N2 reduction reaction (eNRR) at ambient conditions is an appealing method for NH3 synthesis. It has attracted broad research interest in eNRR catalysts. In this work, by a theoretical study based on density functional calculations, we attributed the higher eNRR activity of defective MoS2 than pure MoS2 to the exposed Mo atom with unsaturated coordination sites in the interlayer of defective MoS2. The finding inspired us to explore the eNRR performance of Mo single atom/clusters with one/more active Mo sites supported on MoS2 [Mon@MoS2 (n = 1∼11)] and the corresponding catalytic mechanism. All considered Mon@MoS2 irrespective of N2 or H adsorption selectivity can achieve higher eNRR activity with lower overpotential and lower NH3 desorption free energy than defective MoS2. The competitive hydrogen evolution reaction can be well suppressed on Mon@MoS2 when n = 2∼10. In particular, Mo9@MoS2 with N2 adsorption selectivity exhibits excellent eNRR activity (η = 0.19 V) and high eNRR selectivity, and it can efficiently desorb the produced NH3 with a low desorption free energy (0.50 eV) to achieve a high ammonia yield with the aid of the produced ammonia molecule in the first eNRR process, which is coadsorbed on the Mo9 single cluster during the later eNRR process. The high eNRR activity of Mon@MoS2 can be attributed to its inherent properties of excellent electrical conductivity, electron accessibility, and multiple exposed Mo active sites available for N-containing species coadsorption. The results demonstrate the significance of H preadsorption, the additional N2 adsorption, and the adsorbed product ammonia in the prior eNRR process in enhancing the overall eNRR performance of different-size single-cluster catalysts. Our work provides a guidance for future study of single-cluster catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa