Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(6): 3768-73, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27186800

RESUMO

Hydrogen-terminated diamond possesses due to transfer doping a quasi-two-dimensional (2D) hole accumulation layer at the surface with a strong, Rashba-type spin-orbit coupling that arises from the highly asymmetric confinement potential. By modulating the hole concentration and thus the potential using an electrostatic gate with an ionic-liquid dielectric architecture the spin-orbit splitting can be tuned from 4.6-24.5 meV with a concurrent spin relaxation length of 33-16 nm and hole sheet densities of up to 7.23 × 10(13) cm(-2). This demonstrates a spin-orbit interaction of unprecedented strength and tunability for a 2D hole system at the surface of a wide band gap semiconductor. With a spin relaxation length that is experimentally accessible using existing nanofabrication techniques, this result suggests that hydrogen-terminated diamond has great potential for the study and application of spin transport phenomena.

2.
Nano Lett ; 15(1): 16-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25486108

RESUMO

Hydrogenated diamond possesses a unique surface conductivity as a result of transfer doping by surface acceptors. Yet, despite being extensively studied for the past two decades, little is known about the system at low temperature, particularly whether a two-dimensional hole gas forms at the diamond surface. Here we report that (100) diamond, when functionalized with hydrogen, supports a p-type spin-3/2 two-dimensional surface conductivity with a spin-orbit interaction of 9.74 ± 0.1 meV through the observation of weak antilocalization effects in magneto-conductivity measurements at low temperature. Fits to 2D localization theory yield a spin relaxation length of 30 ± 1 nm and a spin-relaxation time of ∼ 0.67 ± 0.02 ps. The existence of a 2D system with spin orbit coupling at the surface of a wide band gap insulating material has great potential for future applications in ferromagnet-semiconductor and superconductor-semiconductor devices.

3.
ACS Appl Mater Interfaces ; 15(23): 28799-28805, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37166277

RESUMO

We develop a method to fabricate an undoped Ge quantum well (QW) under a 32 nm relaxed Si0.2Ge0.8 shallow barrier. The bottom barrier contains Si0.2Ge0.8 (650 °C) and Si0.1Ge0.9 (800 °C) such that variation of Ge content forms a sharp interface that can suppress the threading dislocation density (TDD) penetrating into the undoped Ge quantum well. The SiGe barrier introduces enough in-plane parallel strain (ε∥ strain -0.41%) in the Ge quantum well. The heterostructure field-effect transistors with a shallow buried channel obtain an ultrahigh two-dimensional hole gas (2DHG) mobility over 2 × 106 cm2/(V s) and a very low percolation density of (5.689 ± 0.062) × 1010 cm-2. The fractional indication is also observed at high density and high magnetic fields. This strained germanium as a noise mitigation material provides a platform for integration of quantum computation with a long coherence time and fast all-electrical manipulation.

4.
Micromachines (Basel) ; 11(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326123

RESUMO

In this work, we investigate the surface transfer doping process that is induced between hydrogen-terminated (100) diamond and the metal oxides, MoO3 and V2O5, through simulation using a semi-empirical Density Functional Theory (DFT) method. DFT was used to calculate the band structure and charge transfer process between these oxide materials and hydrogen terminated diamond. Analysis of the band structures, density of states, Mulliken charges, adsorption energies and position of the Valence Band Minima (VBM) and Conduction Band Minima (CBM) energy levels shows that both oxides act as electron acceptors and inject holes into the diamond structure. Hence, those metal oxides can be described as p-type doping materials for the diamond. Additionally, our work suggests that by depositing appropriate metal oxides in an oxygen rich atmosphere or using metal oxides with high stochiometric ration between oxygen and metal atoms could lead to an increase of the charge transfer between the diamond and oxide, leading to enhanced surface transfer doping.

5.
ACS Appl Mater Interfaces ; 10(43): 37651-37660, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30280560

RESUMO

In semiconductor heterojunction, polarity critically governs the physical properties, with an impact on electronic or optoelectronic devices through the presence of pyroelectric and piezoelectric fields at the active heteropolar interface. In the present work, the abrupt O-polar ZnO/Ga-polar GaN heterointerface was successfully achieved by using high O/Zn ratio flux during the ZnO nucleation growth. Atomic-resolution high-angle annular dark-field and bright-field transmission electron microscopy observation revealed that this polarity inversion confines within one monolayer by forming the (0001) plane inversion domain boundary (IDB) at the ZnO/GaN heterointerface. Through theoretical calculation and topology analysis, the geometry of this IDB was determined to possess an octahedral Ga atomic layer in the interface, with one O/N layer symmetrically bonded at the tetrahedral site. The computed electronic structure of all considered IDBs revealed a metallic character at the heterointerface. More interestingly, the presence of two-dimensional (2D) hole gas (2DHG) or 2D electron gas (2DEG) is uncovered by investigating the chemical bonding and charge transfer at the heterointerface. This work not only clarifies the polarity control and interfacial configuration of the O-polar ZnO/Ga-polar GaN heterojunction but, more importantly, also gives insight into their further application on heterojunction field-effect transistors as well as hybrid ZnO/GaN optoelectronic devices. Moreover, such polarity control at the monolayer scale might have practical implications for heterojunction devices based on other polar semiconductors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa