Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.459
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2313464121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346211

RESUMO

Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Córnea , Bioimpressão/métodos , Impressão Tridimensional , Alicerces Teciduais/química , Hidrogéis/química
2.
J Mammary Gland Biol Neoplasia ; 29(1): 5, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416267

RESUMO

The three-dimensional (3D) structure of the ductal epithelium and the surrounding extracellular matrix (ECM) are integral aspects of the breast tissue, and they have important roles during mammary gland development, function and malignancy. However, the architecture of the branched mammary epithelial network is poorly recapitulated in the current in vitro models. 3D bioprinting is an emerging approach to improve tissue-mimicry in cell culture. Here, we developed and optimized a protocol for 3D bioprinting of normal and cancerous mammary epithelial cells into a branched Y-shape to study the role of cell positioning in the regulation of cell proliferation and invasion. Non-cancerous cells formed continuous 3D cell networks with several organotypic features, whereas the ductal carcinoma in situ (DCIS) -like cancer cells exhibited aberrant basal polarization and defective formation of the basement membrane (BM). Quantitative analysis over time demonstrated that both normal and cancerous cells proliferate more at the branch tips compared to the trunk region of the 3D-bioprinted cultures, and particularly at the tip further away from the branch point. The location-specific rate of proliferation was independent of TGFß signaling but invasion of the DCIS-like breast cancer cells was reduced upon the inhibition of TGFß. Thus, our data demonstrate that the 3D-bioprinted cells can sense their position in the branched network of cells and proliferate at the tips, thus recapitulating this feature of mammary epithelial branching morphogenesis. In all, our results demonstrate the capacity of the developed 3D bioprinting method for quantitative analysis of the relationships between tissue structure and cell behavior in breast morphogenesis and cancer.


Assuntos
Bioimpressão , Carcinoma Intraductal não Infiltrante , Humanos , Células Epiteliais , Epitélio , Fator de Crescimento Transformador beta
3.
Angiogenesis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842751

RESUMO

Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.

4.
Biochem Biophys Res Commun ; 730: 150339, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032359

RESUMO

The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.


Assuntos
Bioimpressão , Impressão Tridimensional , Microambiente Tumoral , Humanos , Bioimpressão/métodos , Neoplasias/patologia , Animais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Alicerces Teciduais/química
5.
Adv Funct Mater ; 34(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39380942

RESUMO

3-D bioprinting is a promising technology to fabricate custom geometries for tissue engineering. However, most bioprintable hydrogels are weak and fragile, difficult to handle and cannot mimetic the mechanical behaviors of the native soft elastic tissues. We have developed a visible light crosslinked, single-network, elastic and biocompatible hydrogel system based on an acrylated triblock copolymer of poly(ethylene glycol) PEG and polycaprolactone (PCL) (PEG-PCL-DA). To enable its application in bioprinting of soft tissues, we have modified the hydrogel system on its printability and biodegradability. Furthermore, we hypothesize that this elastic material can better transmit pulsatile forces to cells, leading to enhanced cellular response under mechanical stimulation. This central hypothesis was tested using vascular conduits with smooth muscle cells (SMCs) cultured under pulsatile forces in a custom-made bioreactor. The results showed that vascular conduits made of PEG-PCL-DA hydrogel faithfully recapitulate the rapid stretch and recoil under the pulsatile pressure from 1 to 3 Hz frequency, which induced a contractile SMC phenotype, consistently upregulated the core contractile transcription factors. In summary, our work demonstrates the potential of elastic hydrogel for 3D bioprinting of soft tissues by fine tuning the printability, biodegradability, while possess robust elastic property suitable for manual handling and biomechanical stimulation.

6.
Adv Funct Mater ; 34(7)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39257639

RESUMO

The availability of grafts to replace small-diameter arteries remains an unmet clinical need. Here, the validated methodology is reported for a novel hybrid tissue-engineered vascular graft that aims to match the natural structure of small-size arteries. The blood vessel mimic (BVM) comprises an internal conduit of co-electrospun gelatin and polycaprolactone (PCL) nanofibers (corresponding to the tunica intima of an artery), reinforced by an additional layer of PCL aligned fibers (the internal elastic membrane). Endothelial cells are deposited onto the luminal surface using a rotative bioreactor. A bioprinting system extrudes two concentric cell-laden hydrogel layers containing respectively vascular smooth muscle cells and pericytes to create the tunica media and adventitia. The semi-automated cellularization process reduces the production and maturation time to 6 days. After the evaluation of mechanical properties, cellular viability, hemocompatibility, and suturability, the BVM is successfully implanted in the left pulmonary artery of swine. Here, the BVM showed good hemostatic properties, capability to withstand blood pressure, and patency at 5 weeks post-implantation. These promising data open a new avenue to developing an artery-like product for reconstructing small-diameter blood vessels.

7.
Small ; 20(8): e2302506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814373

RESUMO

Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional , Organoides , Matriz Extracelular/química , Alicerces Teciduais/química
8.
Small ; 20(31): e2308694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763898

RESUMO

Few studies have proved that bioprinting itself helps recapitulate native tissue functions mainly because the bioprinted macro shape can rarely, if ever, influence cell function. This can be more problematic in bioprinting cartilage, generally considered more challenging to engineer. Here a new method is shown to micro-pattern chondrocytes within bioprinted sub-millimeter micro tissues, denoted as patterned micro-articular-cartilages tissues (PA-MCTs). Under the sole influence of bioprinted cellular patterns. A pattern scoring system is developed after over 600 bioprinted cellular patterns are analyzed. The top-scored pattern mimics that of the isogenous group in native articular cartilage. Under the sole influence of this pattern during PA-MCTs bio-assembling into macro-cartilage and repairing cartilage defects, chondrogenic cell phenotype is preserved, and cartilagenesis is initiated and maintained. Neocartilage tissues from individual and assembled PA-MCTs are comparable to native articular cartilage and superior to cartilage bioprinted with homogeneously distributed cells in morphology, biochemical components, cartilage-specific protein and gene expression, mechanical properties, integration with host tissues, zonation forming and stem cell chondrogenesis. PA-MCTs can also be used as osteoarthritic and healthy cartilage models for therapeutic drug screening and cartilage development studies. This cellular patterning technique can pave a new way for bioprinting to recapitulate native tissue functions via tissue genesis.


Assuntos
Bioimpressão , Cartilagem Articular , Bioimpressão/métodos , Cartilagem Articular/citologia , Animais , Engenharia Tecidual/métodos , Condrogênese , Regeneração , Condrócitos/citologia , Condrócitos/metabolismo , Humanos , Alicerces Teciduais/química
9.
Biomed Microdevices ; 26(3): 29, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888669

RESUMO

Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel scaffold was superior to MSC-embedded Pluronic hydrogel in supporting tissue development and vascularization of a subcutaneous site. While the scaffold alone promoted vascular tissue formation, the inclusion of MSCs in the bio-ink further enhanced angiogenesis. Our findings highlight the use of simple cell-laden degradable bioprinted structures to generate a supportive microenvironment for cell delivery.


Assuntos
Alginatos , Bioimpressão , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Impressão Tridimensional , Alicerces Teciduais , Células-Tronco Mesenquimais/citologia , Animais , Alicerces Teciduais/química , Alginatos/química , Ratos , Gelatina/química , Transplante de Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Tela Subcutânea , Ratos Sprague-Dawley , Hidrogéis/química
10.
Reprod Biomed Online ; 49(4): 104273, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39033691

RESUMO

Reproductive failure due to age, genetics and disease necessitates innovative solutions. While reproductive tissue transplantation has advanced, ongoing research seeks superior approaches. Biomaterials, bioengineering and additive manufacturing, such as three-dimensional (3D) bioprinting, are harnessed to restore reproductive function. 3D bioprinting uses materials, cells and growth factors to mimic natural tissues, proving popular for tissue engineering, notably in complex scaffold creation with cell distribution. The versatility which is brought to reproductive medicine by 3D bioprinting allows more accurate and on-site applicability to various problems that are encountered in the field. However, in the literature, there is a lack of studies encompassing the valuable applications of 3D bioprinting in reproductive medicine. This systematic review aims to improve understanding, and focuses on applications in several branches of reproductive medicine. Advancements span the restoration of ovarian function, endometrial regeneration, vaginal reconstruction, and male germ cell bioengineering. 3D bioprinting holds untapped potential in reproductive medicine.


Assuntos
Bioimpressão , Impressão Tridimensional , Medicina Reprodutiva , Engenharia Tecidual , Humanos , Medicina Reprodutiva/métodos , Medicina Reprodutiva/tendências , Bioimpressão/métodos , Engenharia Tecidual/métodos , Feminino , Masculino , Alicerces Teciduais
11.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602068

RESUMO

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Assuntos
Bioimpressão , Impressão Tridimensional , Lesões por Radiação , Pele , Humanos , Bioimpressão/métodos , Lesões por Radiação/terapia , Pele/efeitos da radiação , Pele/lesões , Pele/patologia , Cicatrização , Engenharia Tecidual/métodos
12.
Scand J Gastroenterol ; 59(5): 623-629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319110

RESUMO

The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.


Assuntos
Fígado , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Fígado/irrigação sanguínea , Organoides , Transplante de Fígado , Bioimpressão/métodos , Pesquisa Biomédica , Neovascularização Fisiológica , Bioengenharia , Animais
13.
Environ Sci Technol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226031

RESUMO

Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.

14.
J Nanobiotechnology ; 22(1): 57, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341585

RESUMO

Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.


Assuntos
Bioimpressão , Hidrogéis , Bioimpressão/métodos , Cicatrização
15.
Artif Organs ; 48(5): 456-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38230806

RESUMO

BACKGROUND: Advances in regeneration methods have brought us improved vascular scaffolds with small diameters (φ < 6 mm) for enhancing biological suitability that solve their propensity for causing intimal hyperplasia post-transplantation. METHODS: The correlation between the rehydration ratio of the hydrogel and its material concentration is obtained by adjusting the material ratio of the hydrogel solution. The vascular model with helical structure has been established and analyzed to verify the effect of helical microvascular structure on thrombosis formation by the fluid simulation methods. Then, the helical structure vascular has been fabricated by self-developed 3D bioprinter, the vascular scaffolds are freeze-dried and rehydrated in polyethylene glycol (PEG) solution. RESULTS: The experimental results showed that the hybrid hydrogel had a qualified rehydration ratio when the content of gelatin, sodium alginate, and glycerol was 5, 6, and 3 wt%. The established flow channel model can effectively reduce thrombus deposition and improve long-term patency ratio. After PEG solution modification, the contact angle of the inner wall of the vascular scaffold was less than 30°, showing better hydrophilic characteristics. CONCLUSION: In study, a small-diameter inner wall vascular scaffold with better long-term patency was successfully designed and prepared by wrinkling and PEG modification of the inner wall of the vascular scaffold. This study not only creates small-diameter vascular scaffolds with helical structure that improves the surface hydrophilicity to reduce the risk of thrombosis but also rekindles confidence in the regeneration of small caliber vascular structures.


Assuntos
Trombose , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidrogéis/química , Polietilenoglicóis , Gelatina , Trombose/etiologia , Trombose/prevenção & controle , Engenharia Tecidual/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-39309029

RESUMO

The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture. This review article explores the adoption of 3D bioprinting modalities to manufacture lab-grown muscle food products and their associated technologies, cells, and bioink formulations. Additionally, various processing techniques, governing the characteristics of bioprinted food products, nutritional compositions, and safety aspects as well as its relevant ethical and social considerations, were discussed. Although promising, further research and development is needed to meet standards and translate into several industrial areas, such as the food and renewable energy industries. In specific, optimization of animal cell culture conditions, development of serum-free media, and bioreactor design are essential to eliminate the risk factors but achieve the unique nutritional requirements and consumer acceptance. In short, the advancement of 3D bioprinting technologies holds great potential for transforming the food industry, but achieving widespread adoption will require continued innovation, rigorous research, and adherence to ethical standards to ensure safety, nutritional quality, and consumer acceptance.

17.
Mar Drugs ; 22(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535475

RESUMO

3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.


Assuntos
Bioimpressão , Quitosana , Materiais Biocompatíveis , Tinta
18.
J Artif Organs ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327399

RESUMO

Improvements in the roll porous scaffold (RPS) 3D bioproduction technology will increase print density of 10-15 µm cells by ~ 20% up to ~ 1.5 × 108 cells/mL and purity of organoid formation by > 17%. The use of 360 and 1200 dpi inkjet printheads immediately enables biomanufacturing with 10-30 µm cells in a single organoid with performance > 1.8 L/h for 15 µm layer thickness. The spongy bioresorbable ribbon for RPS technology is designed to solve the problems of precise placement, leakage and increasing in the number of instantly useable cell types and superior to all currently dominant 3D bioprinting methods in speed, volume, and print density without the use of expensive equipment and components. The potential of RPS for parallel testing of new substances studied was not on animals, but using generated 3D biomodels "organ on a chip". Solid organoids are more suitable for personalized medicine with simultaneous checking of several treatment methods and drugs, targeted therapy for a specific patient in vitro using the 3D composition of his personal cells, and selection of the most effective ones with the least toxicity. Overcoming the shortage of organs for implantation and personal hormone replacement therapy for everyone was achieved using printed endocrine glands based on their DNA.

19.
Bioprocess Biosyst Eng ; 47(4): 443-461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296889

RESUMO

In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Alicerces Teciduais/química
20.
Sci Technol Adv Mater ; 25(1): 2404382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328923

RESUMO

Current in vitro and in vivo tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness. Cell viability, Von Willebrand factor, and CD31 expression were evaluated on biofabricated tissues, showing how bioprinting and Fast Diffusion-induced Gelation can replicate human vessels architecture and complexity. We then applied biofabricated tissue to study the cytotoxicity of a carbothane catheter under static condition, and to better recapitulate the effect of blood flow, a novel bioreactor named CuBiBox (Customized Biological Box) was developed and introduced in a dynamic modality. Collectively, we propose a novel bioprinted platform for human in vitro biocompatibility testing, predicting the impact of medical devices and their materials on vascular systems, reducing animal experimentation and, ultimately, accelerating time to market.


Our study provides an innovative convergence of 3D biofabrication technologies to realize multi-cellularized vessel-like models, as a new tool for in vitro biocompatibility testing of medical devices, minimizing animal experimentation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa