Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447223

RESUMO

Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6µm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Hidrogéis/química , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Medicina Regenerativa , Alicerces Teciduais/química
2.
Adv Mater ; 36(35): e2402853, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003614

RESUMO

Understanding the vascular formation and distribution in metastatic lung tumors is a significant challenge due to autofluorescence, antibody/dye diffusion in dense tumor, and fluorophore stability when exposed to solvent-based clearing agents. Here, an approach is presented that redefines 3D vasculature imaging within metastatic tumor, peritumoral lung tissue, and normal lung. Specifically, a far-red aggregation-induced emission nanoparticle with surface amino groups (termed as TSCN nanoparticle, TSCNNP) is designed for in situ formation of hydrogel (TSCNNP@Gel) inside vasculatures to provide structural support and enhance the fluorescence in solvent-based tissue clearing method. Using this TSCNNP@Gel-reinforced tissue clearing imaging approach, the critical challenges are successfully overcome and comprehensive visualization of the whole pulmonary vasculature up to 2 µm resolution is enabled, including its detailed examination in metastatic tumors. Importantly, features of tumor-associated vasculature in 3D panoramic views are unveiled, providing the potential to determine tumor stages, predict tumor progression, and facilitate the histopathological diagnosis of various tumor types.


Assuntos
Hidrogéis , Imageamento Tridimensional , Neoplasias Pulmonares , Pulmão , Hidrogéis/química , Animais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Pulmão/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/patologia , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Imagem Óptica/métodos , Corantes Fluorescentes/química
3.
Cell Rep Methods ; 3(3): 100436, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056368

RESUMO

Light-sheet fluorescence microscopy (LSFM) can produce high-resolution tomograms of tissue vasculature with high accuracy. However, data processing and analysis is laborious due to the size of the datasets. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ∼100 times faster than other existing vessel analysis tools, requires no user interaction, and integrates batch processing and parallelization. Employing an innovative dual Frangi filter approach, we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.


Assuntos
Imageamento Tridimensional , Software , Animais , Camundongos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Encéfalo/diagnóstico por imagem
4.
J Biophotonics ; 15(12): e202200169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089335

RESUMO

We aimed to test for feasibility of volume-rendered optical coherence tomography angiography (OCTA) as a novel method for assessing/quantifying retinal vasculature during ocular procedures and to explore the potential for intraoperative use. Thirty patients undergoing periocular anaesthesia were enrolled, since published evidence suggests a reduction in ocular blood flow. Retinal perfusion was monitored based on planar OCTA image-derived data provided by a standard quantification algorithm and postprocessed/volume-rendered OCTA data using a custom software script. Overall, imaging procedures were successful, yet imaging artifacts occurred frequently. In interventional eyes, perfusion parameters decreased during anaesthesia. Planar image-derived and volume rendering-derived parameters were correlated. No correlation was found between perfusion parameters and a motion artifact score developed for this study, yet all perfusion parameters correlated with signal strength as displayed by the device. Concluding, volume-rendered OCTA allows for noninvasive three-dimensional retinal vasculature assessment/quantification in challenging surgical settings and appears generally feasible for intraoperative use.


Assuntos
Retina , Tomografia de Coerência Óptica , Humanos , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Retina/cirurgia , Vasos Retinianos/diagnóstico por imagem , Perfusão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa