RESUMO
Three-dimensional printing technologies have been recently proposed to monitor cell cultures and implement cell bioreactors for different biological applications. In tissue engineering, the control of tissue formation is crucial to form tissue constructs of clinical relevance, and 3D printing technologies can also play an important role for this purpose. In this work, we study 3D-printed sensors that have been recently used in cell culture and tissue engineering applications in biological laboratories, with a special focus on the technique of electrical impedance spectroscopy. Furthermore, we study new 3D-printed actuators used for the stimulation of stem cells cultures, which is of high importance in the process of tissue formation and regenerative medicine. Key challenges and open issues, such as the use of 3D printing techniques in implantable devices for regenerative medicine, are also discussed.
Assuntos
Técnicas de Cultura de Células , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Humanos , Medicina Regenerativa , Células-Tronco/citologiaRESUMO
Surgical robots have been extensively researched for a wide range of surgical procedures due to the advantages of improved precision, sensing capabilities, motion scaling, and tremor reduction, to name a few. Though the underlying disease condition or pathology may be the same across patients, the intervention approach to treat the condition can vary significantly across patients. This is especially true for endovascular interventions, where each case brings forth its own challenges. Hence it is critical to develop patient-specific surgical robotic systems to maximize the benefits of robot-assisted surgery. Manufacturing patient-specific robots can be challenging for complex procedures and furthermore the time required to build them can be a challenge. To overcome this challenge, additive manufacturing, namely 3D-printing, is a promising solution. 3D-printing enables fabrication of complex parts precisely and efficiently. Although 3D-printing techniques have been researched for general medical applications, patient-specific surgical robots are currently in their infancy. After reviewing the state-of-the-art in 3D-printed surgical robots, this paper discusses 3D-printing techniques that could potentially satisfy the stringent requirements for surgical interventions. We also present the accomplishments in our group in developing 3D-printed surgical robots for neurosurgical and cardiovascular interventions. Finally, we discuss the challenges in developing 3D-printed surgical robots and provide our perspectives on future research directions.