Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Bioorg Chem ; 133: 106411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801792

RESUMO

A new series of 2,3-diaryl-1,3thiazolidin-4-one derivatives was designed, synthesized, and evaluated for their cytotoxicity and COXs inhibitory activities. Among these derivatives, compounds 4 k and 4j exhibited the highest inhibitory activities against COX-2 at IC50 values of 0.05 and 0.06 µM, respectively. Compounds 4a, 4b, 4e, 4 g, 4j, 4 k, 5b, and 6b, which exhibited the highest inhibition% against COX-2, were evaluated for their anti-inflammatory activity in rats. Results showed 41.08-82.00 % inhibition of paw edema thickness by the test compounds compared to celecoxib (inhibition% = 89.51 %). In addition, compounds 4b, 4j, 4 k, and 6b exhibited better GIT safety profiles compared to celecoxib and indomethacin. The four compounds were also evaluated for their antioxidant activity. The results revealed the highest antioxidant activity for 4j (IC50 = 45.27 µM) comparable to torolox (IC50 = 62.03 µM). The antiproliferative activity of the new compounds was evaluated against HePG-2, HCT-116, MCF-7, and PC-3 cancer cell lines. The results showed the highest cytotoxicity for compounds 4b, 4j, 4 k, and 6b (IC50 = 2.31-27.19 µM), with 4j being the most potent. Mechanistic studies revealed the ability of 4j and 4 k by inducing marked apoptosis and cell cycle arrest at the G1 phase in HePG-2 cancer cells. These biological results may also suggest a role for COX-2 inhibition in the antiproliferative activity of these compounds. The results of the molecular docking study for 4 k and 4j into the active site of COX-2 revealed good fitting and correlation with the results of the in vitro COX­2 inhibition assay.


Assuntos
Antineoplásicos , Citotoxinas , Ratos , Animais , Celecoxib , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Tiazolidinas/farmacologia , Citotoxinas/farmacologia , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Antineoplásicos/química , Desenho de Fármacos
2.
Mol Divers ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750538

RESUMO

Due to multidrug resistance, microbial infections have become significant on a global level. As infections caused by several resistant bacteria and fungi severely harm mankind, scientists have developed new antibiotics to combat these infections. In order to develop novel antimicrobial agents, a series of 4-thiazolidinone-based 5-arylidene hybrids (5a-o) have been designed and synthesized to evaluate their antibacterial and antifungal activities. For the determination of the structure of a novel synthesized hybrid, various spectral techniques, e.g., IR, 1H NMR, 13C NMR, and Mass spectroscopy, were used. Two bacterial gram-negative (Escherichia coli and Pseudomonas aeruginosa), two gram-positive strains (Staphylococcus aureus and Streptococcus pyogenes), and one fungal strain (Candida albicans) were used to evaluate antimicrobial activity. Compounds 5c, 5g, and 5i were effective due to their MIC values of 62.5 µg/mL against tested bacterial strains (S. pyogenes (5c), P. aeruginosa (5g), and E. coli (5i), respectively.) and 250 µg/mL against C. albicans fungal strains, respectively. Additionally, molecular docking and 100 ns molecular dynamic simulations were carried out to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.

3.
Chem Biodivers ; 20(9): e202300896, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605961

RESUMO

Heterocyclic compounds are found in a variety of drug molecules, and bioactive natural products. 4-Thiazolidinones (4-TZDs), which represent an important class of heterocyclic compounds, are of great interest today with their diverse bioactivities. In this study, ten novel 4-TZD derivatives (C1-C10) were synthesized, characterized by spectroscopic techniques, and their genotoxic, and antigenotoxic properties were investigated in vitro using the Ames Salmonella/microsome mutagenicity assay in the concentration range of 0.2-1.0 mM/plate. The results revealed that none of the compounds were mutagenic on the three different Salmonella typhimurium strains up to the highest concentration tested. Furthermore, in our study, C1, C4, C6, and C9 showed significant, ranging from moderate to strong, antigenotoxic effects against mutagen-induced DNA damage at relatively higher doses. Among these, C4 had the best potential to inhibit the number of revertant colonies induced by 9-aminoacridine (9-AA), with a maximum inhibition rate of 47.9 % for 1.0 mM/plate. As a result, preliminary knowledge about the safety of the use of ten novel synthesized 4-TZD compounds likely to exhibit many bioactivities was obtained in this study. In addition, the significant in vitro antimutagenic activity of some derivatives increases the importance of studies for the development of new pharmacological agents for cancer prevention.


Assuntos
Antimutagênicos , Antimutagênicos/farmacologia , Antimutagênicos/química , Mutagênicos/toxicidade , Salmonella typhimurium , Aminacrina , Dano ao DNA
4.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138441

RESUMO

Thiazole and thiazolidinone recur in a wide range of biologically active compounds that reach different targets within the context of tumors and represent a promising starting point to access potential candidates for treating metastatic cancer. Therefore, searching for new lead compounds that show the highest anticancer potency with the fewest adverse effects is a major drug-discovery challenge. Because the thiazole ring is present in dasatinib, which is currently used in anticancer therapy, it is important to highlight the ring. In this study, cycloalkylidenehydrazinecarbothioamides (cyclopentyl, cyclohexyl, cyclooctyl, dihydronapthalenylidene, flurine-9-ylidene, and indolinonyl) reacted with 2-bromoacetophenone and diethylacetylenedicarboxylate to yield thiazole and 4-thiazolidinone derivatives. The structure of the products was confirmed by using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray analyses. The antiproliferative activity of the newly synthesized compounds was evaluated. The most effective inhibitory compounds were further tested in vitro against both epidermal growth factor receptor (EGFR) and B-Raf proto-oncogene, serine/threonine kinase (BRAFV600E) targets. Additionally, molecular docking analysis examined how these molecules bind to the active sites of EGFR and BRAFV600E.


Assuntos
Antineoplásicos , Tiazóis , Humanos , Tiazóis/química , Proteínas Proto-Oncogênicas B-raf , Simulação de Acoplamento Molecular , Recidiva Local de Neoplasia , Receptores ErbB , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
5.
Bioorg Chem ; 121: 105688, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189443

RESUMO

A series of new spirothiazolidinone derivatives with a mandelic acid moiety were synthesized and subsequently tested in growth inhibition assays against Mycobacterium tuberculosis strain H37Rv. Compound 16 displayed the highest inhibition value of 98% at lower than 6.25 µg/mL concentration. A single crystal X-ray analysis was conducted on this compound to confirm the structure and determine its absolute configuration. Afterwards, reverse docking and molecular dynamics simulations of this specific stereoisomer were performed against a selection of 10 putative targets of M. tuberculosis to suggest possible mechanisms of action. Our results suggest HadAB, Pks13, DprE1, FadD32 and InhA as possible target proteins for the observed antimycobacterial activity of compound 16.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Humanos , Ácidos Mandélicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade
6.
Mol Divers ; 26(6): 3037-3045, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35307757

RESUMO

A novel, simple and efficient protocol for the Fe-catalyzed, intermolecular cross-dehydrogenative coupling of pyrimidine bearing 4-thiazolidinones systems and terminal alkynes was established. This methodology offers a high yielding, straightforward, and one-pot approach towards the synthesis of alkynylated 4-thiazolidinones without prior activation of C(sp3)-H and C(sp)-H. The results of control experiments indicated that this conversion might proceed via a radical process.


Assuntos
Alcinos , Ferro , Catálise , Pirimidinas
7.
Mol Divers ; 26(2): 769-780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33484399

RESUMO

Thiazolidinones are well-known heterocycles that demonstrate promising biological effects such as anticonvulsant activity. Hybridization of these chemicals with scaffold, which has necessary pharmacophores for binding to the benzodiazepine receptors, can prompt a novel structure possessing extensive anticonvulsant effects. In this study, novel derivatives of thiazolidinone as new benzodiazepine agonists were designed, synthesized, and biologically evaluated. Compound 5h, 4-chloro-2-(2-fluorophenoxy)-N-(4-oxo-2-(p-tolyl)thiazolidin-3-yl)benzamide, exhibited considerable anticonvulsant activity, proper sedative-hypnotic effect, no memory impairment, and no muscle relaxant effect. The pharmacological effects of the designed compounds were antagonized by flumazenil, which confirmed the benzodiazepine receptors' involvement in their biological effects. Based on in silico calculations of ADME properties of our novel compounds, they could be active oral agents potentially. In this study, we designed novel structures by the hybridization of thiazolidinone moiety with scaffold which has necessary pharmacophores for binding to the benzodiazepine receptors. The results are very promising for developing new lead compounds as benzodiazepine agonists possess anticonvulsant effects.


Assuntos
Anticonvulsivantes , Benzodiazepinas , Anticonvulsivantes/química , Humanos , Receptores de GABA-A/química , Convulsões/tratamento farmacológico
8.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361924

RESUMO

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Assuntos
Antineoplásicos , Desenho de Fármacos , Tiazolidinas/farmacologia , Tiazolidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Química Farmacêutica
9.
Mol Divers ; 25(2): 1025-1050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32328961

RESUMO

4-Thiazolidinones and phenylaminopyrimidines are known as anticancer agents. Imatinib is the pioneer phenylaminopyrimidine derivative kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. With a hybrid approach, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives containing phenylaminopyrimidine core were designed, synthesized, and tested for their anticancer activity on K562 (chronic myeloid leukemia), PC3 (prostat cancer), and SHSY-5Y (neuroblastoma) cells. Since superior anticancer activity was observed on K562 cells, further biological studies of selected compounds (8, 15, and 34) were performed on K562 cells. For the synthesis of designed compounds, thiourea compounds were converted to 2-imino-1,3-thiazolidin-4-ones with α-chloroacetic acid in the presence of sodium acetate. 5-Benzylidene-2-imino-1,3-thiazolidin-4-one derivatives were obtained by Knoevenagel condensation of 2-imino-1,3-thiazolidin-4-ones with related aldehydes. Compounds 8, 15, and 34 were evaluated for cell viability, apoptosis studies, cell cycle experiments, and DNA damage assays. IC50 values of compounds 8, 15, and 34 were found as 5.26 ± 1.03, 3.52 ± 0.91, and 8.16 ± 1.27 µM, respectively, in K562 cells. Preferably, these compounds showed less toxicity towards L929 cells compared to imatinib. Furthermore, compounds 8 and 15 significantly induced early and late apoptosis in a time-dependent manner. Compounds 15 and 34 induced cell cycle arrest at G0/G1 phase and compound 8 caused cell cycle arrest at G2/M phase. Based on DNA damage assay, compounds 8 and 15 were found to be more genotoxic than imatinib towards K562 cells. To put more molecular insight, possible Abl inhibition mechanisms of most active compounds were predicted by molecular docking studies. In conclusion, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives and their promising anticancer activities were reported herein.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Pirimidinas , Tiazolidinas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/química , Tiazolidinas/farmacologia
10.
Arch Pharm (Weinheim) ; 353(1): e1900304, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31777988

RESUMO

Heterocyclic compounds are of particular importance among pharmacologically active compounds. In this study, some piperonyl-based 4-thiazolidinone derivatives (2a-i) were synthesized and characterized by spectroscopic assays. All molecules were tested as enzyme inhibitory factors. These compounds were effective inhibitors of the enzymes acetylcholinesterase (AChE), α-glycosidase (α-Gly), and the human carbonic anhydrase I and II isoforms (hCA I and II), with Ki values in the range of 8.90-66.51 nM for α-Gly, 94.8-289.5 nM for hCA I, 106.3-304.6 nM for hCA II, and 0.55-2.36 nM for AChE. The synthesized molecules were also studied theoretically. Molecular docking calculations were performed to investigate the interaction between the target protein and molecules. CA inhibitor compounds have been clinically used for almost 60 years as antiglaucoma and diuretic drugs. The inhibition of the AChE enzyme results in the blockage of ACh hydrolysis. On the contrary, the design of inhibitor compounds or/and modulators for AChE is of major interest as it is one of the most popular tools to prevent Alzheimer's disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Tiazolidinas/química , Tiazolidinas/farmacologia , Acetilcolinesterase/metabolismo , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química
11.
Molecules ; 25(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344801

RESUMO

Cyclooxygenase-2 (COX-2) is implicated in the development of chronic inflammatory diseases. Recently, pyridazine derivatives have emerged as a novel prototype to develop COX-2 inhibitors. Accordingly, some pyridazine-based COX-2 inhibitors are reported herein. The reaction of aldehyde 3 and different hydrazines yielded the corresponding hydrazones. The hydrazones were further derivatized to the title compounds, which were assessed for COX-1 and COX-2 inhibitory action, gastric ulcerogenic effects, and lipid peroxidation properties. Molecular docking studies and determination of the physicochemical parameters were also carried out. The allocated structures of the reported compounds were coherent with their spectroscopic data. The compounds 9a (IC50 = 15.50 nM, 114.77%), 9b (IC50 = 17.50 nM, 101.65%), 12 (IC50 = 17.10 nM, 104.03%), 16b (IC50 = 16.90 nM, 105.26%), and 17 (IC50 = 17.70 nM, 100.5%) displayed better COX-2 inhibition than celecoxib (IC50 = 17.79 nM, 100%). These outcomes were harmonious with the molecular docking studies of 9a, 9b, 12, 16b, and 17. These compounds also displayed comparable onset and the duration of action concerning celecoxib and indomethacin in the in vivo studies. No ulcerogenic effects were observed for 9a and 12, whereas 9b, 16b, and 17 showed an insignificant ulcerogenic effect compared to celecoxib. The compounds 9a, 9b, 12, 16b, and 17 displayed a better lipid peroxidation profile than celecoxib and indomethacin. The compounds 9a (%ABS = 84.09), 9b (%ABS = 84.09), 12 (%ABS = 66.87), 16b (%ABS = 75.02), and 17 (%ABS = 81.42) also displayed appreciable calculated absorption compared to celecoxib (%ABS = 82.09). The compounds 9a, 9b, 11, 16b, and 17 have been recognized and postulated as non-ulcerogenic COX-2 inhibitors with promising physicochemical parameters and gastric safety profile. These compounds may be useful candidates to combat diseases caused by higher levels of COX-2.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Descoberta de Drogas , Piridazinas/farmacologia , Anti-Inflamatórios/química , Antiulcerosos/química , Antiulcerosos/farmacologia , Fenômenos Químicos , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ligação de Hidrogênio , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
12.
Bioorg Chem ; 83: 6-19, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339863

RESUMO

A series of new benzothiazole-1,3,4-oxadiazole-4-thiazolidinone hybrid analogs (Tz1-Tz28) were synthesized in search of potential anti-diabetic agents. Molecular docking study was conducted with binding pocket of peroxisome proliferator activated receptor-gamma to elucidate the binding interactions of newly synthesized targets. Seven selected compounds with best docking scores were further screened for in vivo anti-hyperglycemic efficacy by oral glucose tolerance test in non-diabetic rats and on streptozotocin induced diabetic rat models. All the tested compounds demonstrated excellent to moderate reduction in blood glucose levels. Three of the compounds (Tz21, Tz7 and Tz10) showed excellent anti-diabetic effect by reducing concentration of glucose to 157.15 ±â€¯1.79 mg/dL, 154.39 ±â€¯1.71 mg/dL, 167.36 ±â€¯2.45 mg/dL, respectively better than the standard drug, pioglitazone, 178.32 ±â€¯1.88 mg/dL. Moreover, three derivatives Tz21, Tz4 and Tz24 with IC50 values of 0.21 ±â€¯0.01 µM, 9.03 ±â€¯0.12 µM and 11.96 ±â€¯0.40 µM respectively also showed better inhibitory activities on alpha-glucosidase even more than the standard acarbose (IC50 = 18.5 ±â€¯0.20 µM), indicating Tz21 has the highest inhibitory effect among the seven tested derivatives. Prediction of Drug like properties using molinspiration online software suggests that all the synthesized compounds have potential of becoming the orally active molecules. Thus, these novel hybrids could serve as potential candidates to become leads for the development of new drugs eliciting anti-hyperglycemic effect orally.


Assuntos
Benzotiazóis/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Tiazolidinas/farmacologia , Administração Oral , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Masculino , Estrutura Molecular , Oxidiazóis/administração & dosagem , Oxidiazóis/química , Ratos , Ratos Wistar , Estreptozocina , Relação Estrutura-Atividade , Tiazolidinas/administração & dosagem , Tiazolidinas/química
13.
Bioorg Med Chem Lett ; 28(23-24): 3712-3720, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342956

RESUMO

Designed multiple ligands (DMLs), developed to modulate simultaneously a number of selected targets involved in etiopathogenetic mechanisms of a multifactorial disease, such as diabetes mellitus (DM), are considered a promising alternative to combinations of drugs, when monotherapy results to be unsatisfactory. In this work, compounds 1-17 were synthesized and in vitro evaluated as DMLs directed to aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two key enzymes involved in different events which are critical for the onset and progression of type 2 DM and related pathologies. Out of the tested 4-thiazolidinone derivatives, compounds 12 and 16, which exhibited potent AR inhibitory effects along with interesting inhibition of PTP1B, can be assumed as lead compounds to further optimize and balance the dual inhibitory profile. Moreover, several structural portions were identified as features that could be useful to achieve simultaneous inhibition of both human AR and PTP1B through binding to non-catalytic regions of both target enzymes.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazolidinas/química , Tiazolidinas/farmacologia , Aldeído Redutase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
14.
Bioorg Chem ; 80: 461-471, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986191

RESUMO

Selective inhibition of both cyclooxygenase-2 (COX-2) and 15-lipooxygenase (15-LOX) may provide good strategy for alleviation of inflammatory disorders while minimizing side effects associated with current anti-inflammatory drugs. The present study describes the synthesis, full characterization and biological evaluation of a series of thiadiazole-thiazolidinone hybrids bearing 5-alk/arylidene as dual inhibitors of these enzymes. Our design was based on merging pharmacophores that exhibit portent anti-inflammatory activities in one molecular frame. 5-(4-hydroxyphenyl)-1,3,4-thiadiazol-2-amine (3) was efficiently synthesized, chloroacetylated and cyclized to give the key 4-thiazolidinone (5). Knovenagel condensation of 5 with different aldehydes afforded the final compounds 6a-m, 7, 8 and 9. These compounds were subjected to in vitro COX-1/COX-2, 15-LOX inhibition assays. Compounds (6a, 6f, 6i, 6l, 6m and 9) with promising potency (IC50 = 70-100 nM) and selectivity index (SI = 220-55) were further tested for in vivo anti-inflammatory activity and effect on gastric mucosa. The most promising compound (6l) inhibits COX-2 enzyme at a nanomolar concentration (IC50 = 70 nM, SI = 220) with simultaneous inhibition of 15-LOX (IC50 = 11 µM). These results are comparable to the potency and selectivity of the standard drugs of both enzymes; celecoxib (COX-2 IC50 = 49 nM, SI = 308) and zileuton (15-LOX IC50 = 15 µM) in one construct. Interestingly three compounds (6a, 6l and 9) exhibited equivalent to or even higher than that of celecoxib in vivo anti-inflammatory activity at 3 h interval with good GIT safety profile. Molecular docking study conferred binding sites of these compounds on COX-2 and 15-LOX. Such type of compounds would represent valuable leads for further investigation and derivatization.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Tiazolidinas/química , Tiazolidinas/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Araquidonato 15-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Edema/tratamento farmacológico , Edema/metabolismo , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/uso terapêutico , Masculino , Simulação de Acoplamento Molecular , Ratos , Tiadiazóis/síntese química , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tiazolidinas/síntese química , Tiazolidinas/uso terapêutico
15.
Bioorg Med Chem Lett ; 27(4): 1017-1025, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089698

RESUMO

A library of fourteen 2-imino-4-thiazolidinone derivatives (1a-1n) has been synthesized and evaluated for in vivo anti-inflammatory activity and effect on ex-vivo COX-2 and TNF-α expression. Compounds 1k (5-(2,4-dichloro-phenooxy)-acetic acid (3-benzyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) and 1m (5-(2,4-dichloro-phenooxy)-acetic acid (3-cyclohexyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) exhibited in vivo inhibition of 81.14% and 78.80% respectively after 5h in comparison to indomethacin which showed 76.36% inhibition of inflammation without causing any damage to the stomach. Compound 1k showed a reduction of 68.32% in the level of COX-2 as compared to the indomethacin which exhibited 66.23% inhibition of COX-2. The selectivity index of compound 1k was found to be 29.00 in comparison to indomethacin showing selectivity index of 0.476. Compounds 1k and 1m were also found to significantly suppress TNF-α concentration to 70.10% and 68.43% in comparison to indomethacin which exhibited 66.45% suppression.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Anti-Inflamatórios/farmacologia , Tiazóis/farmacologia , Animais , Anti-Inflamatórios/química , Desenho de Fármacos , Ratos , Ratos Wistar , Úlcera Gástrica/prevenção & controle , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Fator de Necrose Tumoral alfa/metabolismo
16.
Bioorg Chem ; 71: 211-218, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28236450

RESUMO

Rapid emergence of drug resistance is crucial in management of HIV infection limiting implementation of efficacious drugs in the ART regimen. Designing new molecules against HIV drug resistant strains is utmost essential. Based on the anti-HIV-1 activity, we selected four 4-thiazolidinone derivatives (S009-1908, S009-1909, S009-1911, S009-1912) and studied their interaction with reverse transcriptase (RT) from a panel of 10 clinical isolates (8 nevirapine resistant and two susceptible) using in silico methods, and inhibition pattern using in vitro cell based assays. On the basis of binding affinity observed in in silico analysis, 2-(2-chloro-6-nitrophenyl)-3-(4, 6-dimethylpyridin-2-yl) thiazolidin-4-one (S009-1912) was identified as the lead molecule followed by S009-1908, S009-1909 and S009-1911. The in vitro activity against the same panel was assessed using TZM-bl assay (IC50: 0.4-11.44µg/ml, TI: 4-126) and subsequently in PBMC assay against a nevirapine resistant clinical isolate (IC50: 0.8-6.65µg/ml, TI: 8.31-11.43) and standard strain from NIH ARRRP (IC50: 0.95-3.6µg/ml, TI: 9-26). The study shows analogue with pyrimidin-2-yl amino substitution at N-3 position of thiazolidin-4-one ring (S009-1908, S009-1909, S009-1911) exhibited enhanced activity as compared to pyridin-2-yl substituted derivatives (S009-1912), suggesting the use 4-thiazolidinones for developing potent inhibitors against HIV-1 drug resistant strains.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Tiazolidinas/química , Tiazolidinas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Humanos , Leucócitos Mononucleares/virologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
17.
Mol Divers ; 21(4): 1011-1020, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28620862

RESUMO

Herein, we report a facile method for the alkenylation of a 4-thiazolidinone motif without using external acid and high-pressure gas, which are required in conventional Fujiwara-Moritani reactions. Mild reaction conditions, one-pot synthesis, and utilization of an oxidant made this process more feasible in comparison with previously reported methods. Functionalization of the slightly more acidic [Formula: see text] C-H bond with the less acidic [Formula: see text] C-H bond yielded the alkenylated motif. This pathway opens new possibilities for organic synthesis.


Assuntos
Alcenos/química , Paládio/química , Tiazolidinas/química , Catálise
18.
Bioorg Med Chem Lett ; 26(7): 1647-50, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26947606

RESUMO

Two privileged pharmacophores were assembled in one molecular frame involving 5-aminosalicylate and 4-thiazolinones that can be found in different stereochemical features. The compounds were fully characterized and evaluated for antiproliferative activity against four human cancer cell lines and some are equipotent to doxorubicin with lower cytotoxicity to normal cells. The most interesting finding relates to compound 10, which shows an IC50 value of 70nM against MCF-7 cells, while the IC50 against human fibroblasts is 10µM. The results of this study indicate that the new compounds are optimal anti-cancer leading compounds and merit further studies to optimize their structure, detect their biotargets and in vivo activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesalamina/química , Mesalamina/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Humanos , Células MCF-7 , Modelos Moleculares , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 26(21): 5361-5368, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546293

RESUMO

A new series of 2-imino-4-thiazolidinone derivatives (7a-7t) has been synthesised and screened for their cytotoxicity against three cancer cell lines (B16F10, A549, PANC-1) and normal cell line (CHO). Among the compounds tested, compounds 7k, 7m, 7n showed potent cytotoxicity against B16F10 cell line with IC50 between 3.4 and 7µM. Interestingly these three compounds are non toxic to non cancerous CHO cells and induced apoptosis in B16F10 cells observed by DNA damage analysis through PI/Hoechst double staining method. Compounds 7k and 7n induced G0/G1 cell cycle arrest while compound 7m induced G2/M cell cycle arrest in B16F10 cells which confirms that these compounds have role in cancer cell cycle regulation. Additionally, compound 7m showed generation of intracellular reactive oxygen species (ROS) in B16F10 cells that may contribute in the cell cycle arrest whereas compounds 7k and 7n show anti-cancer activity through independent of ROS formation. Induction of apoptosis, cell cycle arrest in B16F10 cells are found to be the anti-cancer mechanism of these three compounds. The results all together demonstrate the potent cytotoxic nature of these compounds in cancer cells could be considered as new class of chemotherapeutic agents in near future.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Camundongos
20.
Bioorg Med Chem ; 24(2): 240-6, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707844

RESUMO

A novel series of indolylthiosemicarbazides (6a-6g) and their cyclization products, 4-thiazolidinones (7a-7g), have been designed, synthesized and evaluated, in vitro, for their antiviral activity against a wide range of DNA and RNA viruses. Compounds 6a, 6b, 6c and 6d exhibited notable antiviral activity against Coxsackie B4 virus, at EC50 values ranging from 0.4 to 2.1 µg/mL. The selectivity index (ratio of cytotoxic to antivirally effective concentration) values of these compounds were between 9 and 56. Besides, 6b, 6c and 6d also inhibited the replication of two other RNA viruses, Sindbis virus and respiratory syncytial virus, although these EC50 values were higher compared to those noted for Coxsackie B4 virus. The SAR analysis indicated that keeping the free thiosemicarbazide moiety is crucial to obtain this antiviral activity, since the cyclization products (7a-7g) did not produce any antiviral effect.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Vírus de DNA/efeitos dos fármacos , Indóis/farmacologia , Vírus de RNA/efeitos dos fármacos , Semicarbazidas/farmacologia , Tiazolidinas/farmacologia , Animais , Antivirais/química , Gatos , Células Cultivadas , Chlorocebus aethiops , Cães , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Indóis/síntese química , Indóis/química , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Estrutura Molecular , Semicarbazidas/síntese química , Semicarbazidas/química , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa