Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.328
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823651

RESUMO

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Assuntos
Colágeno/química , Fibrose/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Pró-Colágeno/química , Pró-Colágeno/metabolismo , Animais , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Hidroxilação , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
2.
Annu Rev Cell Dev Biol ; 37: 89-114, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152790

RESUMO

Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia.


Assuntos
Neoplasias , Plásticos , Humanos , Fagócitos , Fagocitose/genética , Plásticos/uso terapêutico , Transdução de Sinais/fisiologia
3.
Cell ; 179(6): 1342-1356.e23, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31759698

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Proteína SMARCB1/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos/genética , Feminino , Genoma Humano , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo
4.
Immunity ; 53(2): 290-302.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32768386

RESUMO

CD47 acts as a "don't eat me" signal that protects cells from phagocytosis by binding and activating its receptor SIPRA on macrophages. CD47 suppresses multiple different pro-engulfment "eat me" signals, including immunoglobulin G (IgG), complement, and calreticulin, on distinct target cells. This complexity has limited understanding of how the "don't eat me" signal is transduced biochemically. Here, we utilized a reconstituted system with a defined set of signals to interrogate the mechanism of SIRPA activation and its downstream targets. CD47 ligation altered SIRPA localization, positioning SIRPA for activation at the phagocytic synapse. At the phagocytic synapse, SIRPA inhibited integrin activation to limit macrophage spreading across the surface of the engulfment target. Chemical reactivation of integrin bypassed CD47-mediated inhibition and rescued engulfment, similar to the effect of a CD47 function-blocking antibody. Thus, the CD47-SIRPA axis suppresses phagocytosis by inhibiting inside-out activation of integrin signaling in the macrophage, with implications to cancer immunotherapy applications.


Assuntos
Antígeno CD47/metabolismo , Integrinas/metabolismo , Macrófagos/imunologia , Fagocitose/imunologia , Receptores Imunológicos/metabolismo , Animais , Calreticulina/imunologia , Linhagem Celular , Proteínas do Sistema Complemento/imunologia , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilserinas/imunologia , Células RAW 264.7 , Transdução de Sinais/imunologia
5.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814029

RESUMO

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Assuntos
Antígeno CD47/metabolismo , Cromossomos Humanos Par 10/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Osteopontina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação/fisiologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Olho/patologia , Predisposição Genética para Doença/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Transdução de Sinais/genética
6.
Mol Cell ; 77(4): 748-760.e9, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31785928

RESUMO

Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo. Cellular CALR release was confirmed in suitable mouse models bearing exon-9-mutated hematopoietic systems or tumors. Extracellular CALR mediated immunomodulatory effects and inhibited the phagocytosis of dying cancer cells by dendritic cells (DC), thereby suppressing antineoplastic immune responses elicited by chemotherapeutic agents or by PD-1 blockade. Altogether, our results demonstrate paracrine immunosuppressive effects for exon-9-mutated CALR.


Assuntos
Calreticulina/genética , Tolerância Imunológica/genética , Mutação , Neoplasias/genética , Neoplasias/imunologia , Animais , Calreticulina/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
7.
Proc Natl Acad Sci U S A ; 121(5): e2318534121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261615

RESUMO

The use of colony-stimulating factor-1 receptor (CSF1R) inhibitors has been widely explored as a strategy for cancer immunotherapy due to their robust depletion of tumor-associated macrophages (TAMs). While CSF1R blockade effectively eliminates TAMs from the solid tumor microenvironment, its clinical efficacy is limited. Here, we use an inducible CSF1R knockout model to investigate the persistence of tumor progression in the absence of TAMs. We find increased frequencies of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the bone marrow, throughout circulation, and in the tumor following CSF1R deletion and loss of TAMs. We find that G-MDSCs are capable of suppressing macrophage phagocytosis, and the elimination of G-MDSCs through CXCR2 inhibition increases macrophage capacity for tumor cell clearance. Further, we find that combination therapy of CXCR2 inhibition and CD47 blockade synergize to elicit a significant anti-tumor response. These findings reveal G-MDSCs as key drivers of tumor immunosuppression and demonstrate their inhibition as a potent strategy to increase macrophage phagocytosis and enhance the anti-tumor efficacy of CD47 blockade in B16-F10 melanoma.


Assuntos
Melanoma Experimental , Células Supressoras Mieloides , Animais , Antígeno CD47 , Granulócitos , Macrófagos , Microambiente Tumoral , Camundongos
8.
Semin Cell Dev Biol ; 155(Pt B): 22-31, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37258315

RESUMO

Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFß, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.


Assuntos
Antígeno CD47 , Transdução de Sinais , Animais , Camundongos , Antígeno CD47/metabolismo , Transdução de Sinais/fisiologia , Matriz Extracelular/metabolismo , Trombospondinas
9.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
10.
Proc Natl Acad Sci U S A ; 120(33): e2304943120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549290

RESUMO

Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.


Assuntos
Antígeno CD47 , Linfócitos T CD8-Positivos , Animais , Camundongos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Sobrevivência Celular , Células Dendríticas/metabolismo , Necroptose , Receptores Imunológicos/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626553

RESUMO

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Assuntos
Monócitos , NADPH Oxidases , Quinases Associadas a rho , Humanos , Aminoácidos , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio , Quinases Associadas a rho/metabolismo
12.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
13.
Plant J ; 120(1): 234-252, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39145524

RESUMO

Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1). The function of AtXAPT1 was verified in planta by its T-DNA knockout mutation showing a loss of the Arap substitution on xylan GlcA side chains. Further biochemical characterization of XAPT close homologs from other plant species demonstrated that while the poplar ones had the same catalytic activity as AtXAPT1, those from Eucalyptus, lemon-scented gum, sea apple, 'Ohi'a lehua, duckweed and purple yam were capable of catalyzing both 2-O-Arap and 2-O-Gal substitutions of xylan GlcA side chains albeit with differential activities. Sequential reactions with XAPTs and glucuronoxylan methyltransferase 3 (GXM3) showed that XAPTs acted poorly on MeGlcA side chains, whereas GXM3 could efficiently methylate arabinosylated or galactosylated GlcA side chains of xylan. Furthermore, molecular docking and site-directed mutagenesis analyses of Eucalyptus XAPT1 revealed critical roles of several amino acid residues at the putative active site in its activity. Together, these findings establish that XAPTs residing in the MUR3 clade of family GT47 are responsible for 2-O-arabinopyranosylation and 2-O-galactosylation of GlcA side chains of xylan.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glicosiltransferases , Xilanos , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/enzimologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Parede Celular/metabolismo , Parede Celular/enzimologia , Arabinose/metabolismo
14.
FASEB J ; 38(15): e23857, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39114953

RESUMO

Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.


Assuntos
Aterosclerose , Antígeno CD47 , Eferocitose , MicroRNAs , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Antígeno CD47/metabolismo , Antígeno CD47/genética , Dieta Hiperlipídica/efeitos adversos , Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo
15.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39183364

RESUMO

47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Humanos , Feminino , Adulto , Bainha de Mielina/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Aberrações dos Cromossomos Sexuais , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/diagnóstico por imagem , Cromossomos Humanos X/genética , Trissomia/genética , Córtex Cerebral/diagnóstico por imagem
16.
Drug Resist Updat ; 74: 101068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402670

RESUMO

The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Antígeno CD47 , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Imunoterapia/métodos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
17.
J Allergy Clin Immunol ; 153(5): 1423-1431.e2, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290608

RESUMO

BACKGROUND: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described. OBJECTIVES: We sought to study HCT for p47phox CGD in North America. METHODS: Thirty patients with p47phox CGD who received allogeneic HCT at Primary Immune Deficiency Treatment Consortium centers since 1995 were included. RESULTS: Residual oxidative activity was present in 66.7% of patients. In the year before HCT, there were 0.38 CGD-related infections per person-years. Inflammatory diseases, predominantly of the lungs and bowel, occurred in 36.7% of the patients. The median age at HCT was 9.1 years (range 1.5-23.6 years). Most HCTs (90%) were performed after using reduced intensity/toxicity conditioning. HCT sources were HLA-matched (40%) and -mismatched (10%) related donors or HLA-matched (36.7%) and -mismatched (13.3%) unrelated donors. CGD-related infections after HCT decreased significantly to 0.06 per person-years (P = .038). The frequency of inflammatory bowel disease and the use of steroids also decreased. The cumulative incidence of graft failure and second HCT was 17.9%. The 2-year overall and event-free survival were 92.3% and 82.1%, respectively, while at 5 years they were 85.7% and 77.0%, respectively. In the surviving patients evaluated, ≥95% donor myeloid chimerism at 1 and 2 years after HCT was 93.8% and 87.5%, respectively. CONCLUSIONS: Patients with p47phox CGD suffer from a significant disease burden that can be effectively alleviated by HCT. Similar to other forms of CGD, HCT should be considered for patients with p47phox CGD.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , NADPH Oxidases , Humanos , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/genética , NADPH Oxidases/genética , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Lactente , Adulto Jovem , Transplante Homólogo , Condicionamento Pré-Transplante/métodos , Doença Enxerto-Hospedeiro , Adulto , Resultado do Tratamento
18.
Nano Lett ; 24(9): 2894-2903, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407042

RESUMO

Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Antígeno CD47 , Regulação para Baixo , Imunoterapia , Fagocitose , Fenômenos Magnéticos , Neoplasias/patologia , Microambiente Tumoral
19.
J Mol Cell Cardiol ; 186: 81-93, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995517

RESUMO

AIM: Doxorubicin-induced cardiotoxicity (DIC) is an increasing problem, occurring in many cancer patients receiving anthracycline chemotherapy, ultimately leading to heart failure (HF). Unfortunately, DIC remains difficult to manage due to an ignorance regarding pathophysiological mechanisms. Our work aimed to evaluate the role of HSP47 in doxorubicin-induced HF, and to explore the molecular mechanisms. METHODS AND RESULTS: Mice were exposed to multi-intraperitoneal injection of doxorubicin (DOX, 4mg/kg/week, for 6 weeks continuously) to produce DIC. HSP47 expression was significantly upregulated in serum and in heart tissue in DOX-treated mice and in isolated cardiomyocytes. Mice with cardiac-specific HSP47 overexpression and knockdown were generated using recombinant adeno-associated virus (rAVV9) injection. Importantly, cardiac-specific HSP47 overexpression exacerbated cardiac dysfunction in DIC, while HSP47 knockdown prevented DOX-induced cardiac dysfunction, cardiac atrophy and fibrosis in vivo and in vitro. Mechanistically, we identified that HSP47 directly interacted with IRE1α in cardiomyocytes. Furthermore, we provided powerful evidence that HSP47-IRE1α complex promoted TXNIP/NLRP3 inflammasome and reinforced USP1-mediated NLRP3 ubiquitination. Moreover, NLRP3 deficiency in vivo conspicuously abolished HSP47-mediated cardiac atrophy and fibrogenesis under DOX condition. CONCLUSION: HSP47 was highly expressed in serum and cardiac tissue after doxorubicin administration. HSP47 contributed to long-term anthracycline chemotherapy-associated cardiac dysfunction in an NLRP3-dependent manner. HSP47 therefore represents a plausible target for future therapy of doxorubicin-induced HF.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Miócitos Cardíacos/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Atrofia/induzido quimicamente , Atrofia/metabolismo , Atrofia/patologia , Apoptose , Estresse Oxidativo
20.
J Biol Chem ; 299(4): 104594, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898577

RESUMO

Cluster of differentiation 47 (CD47) plays an important role in the pathophysiology of various diseases including atherosclerosis but its role in neointimal hyperplasia which contributes to restenosis has not been studied. Using molecular approaches in combination with a mouse vascular endothelial denudation model, we studied the role of CD47 in injury-induced neointimal hyperplasia. We determined that thrombin-induced CD47 expression both in human aortic smooth muscle cells (HASMCs) and mouse aortic smooth muscle cells. In exploring the mechanisms, we found that the protease-activated receptor 1-Gα protein q/11 (Gαq/11)-phospholipase Cß3-nuclear factor of activated T cells c1 signaling axis regulates thrombin-induced CD47 expression in HASMCs. Depletion of CD47 levels using its siRNA or interference of its function by its blocking antibody (bAb) blunted thrombin-induced migration and proliferation of HASMCs and mouse aortic smooth muscle cells. In addition, we found that thrombin-induced HASMC migration requires CD47 interaction with integrin ß3. On the other hand, thrombin-induced HASMC proliferation was dependent on CD47's role in nuclear export and degradation of cyclin-dependent kinase-interacting protein 1. In addition, suppression of CD47 function by its bAb rescued HASMC efferocytosis from inhibition by thrombin. We also found that vascular injury induces CD47 expression in intimal SMCs and that inhibition of CD47 function by its bAb, while alleviating injury-induced inhibition of SMC efferocytosis, attenuated SMC migration, and proliferation resulting in reduced neointima formation. Thus, these findings reveal a pathological role for CD47 in neointimal hyperplasia.


Assuntos
Antígeno CD47 , Reestenose Coronária , Miócitos de Músculo Liso , Animais , Humanos , Camundongos , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hiperplasia/metabolismo , Hiperplasia/fisiopatologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/fisiopatologia , Trombina/metabolismo , Lesões do Sistema Vascular/fisiopatologia , Regulação da Expressão Gênica/genética , Reestenose Coronária/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa