Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(13): 2813-2816, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943443

RESUMO

This work reports the synthesis, characterization, and sensing behavior of a hybrid nanodevice for the detection of the potent abuse drug 25I-NBOMe. The system is based on mesoporous silica nanoparticles, loaded with a fluorescent dye, functionalized with a serotonin derivative and capped with the 5-HT2A receptor antibody. In the presence of 25I-NBOMe the capping antibody is displaced, leading to pore opening and rhodamine B release. This delivery was ascribed to 5-HT2A receptor antibody detachment from the surface due to its stronger coordination with 25I-NBOMe present in the solution. The prepared nanodevice allowed the sensitive (limit of detection of 0.6 µm) and selective recognition of the 25I-NBOMe drug (cocaine, heroin, mescaline, lysergic acid diethylamide, MDMA, and morphine were unable to induce pore opening and rhodamine B release). This nanodevice acts as a highly sensitive and selective fluorometric probe for the 25I-NBOMe illicit drug in artificial saliva and in sweets.


Assuntos
Dimetoxifeniletilamina/análogos & derivados , Alucinógenos/química , Serotonina/química , Dimetoxifeniletilamina/análise , Dimetoxifeniletilamina/química , Humanos
2.
ACS Chem Neurosci ; 12(12): 2088-2098, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34032411

RESUMO

Neurodegeneration and impaired neural development are a common feature of many neuropsychiatric disorders. Second-generation antipsychotics (SGAs) and certain atypical antidepressants display neuroprotective effects. Though these drugs interact with many molecular targets, a common shared attribute is high antagonist potency at 5-HT2A receptors. Pimavanserin is a selective 5-HT2A inverse agonist/antagonist that was recently FDA approved for treating hallucinations and delusions associated with Parkinson's disease. Unlike SGAs, pimavanserin lacks activity at other targets like dopamine, histamine, muscarinic, and adrenergic receptors. To investigate whether selective 5-HT2A inverse agonists have neuroprotective properties, pimavanserin and another selective 5-HT2A inverse agonist, M100907, were applied to primary cultures of dopaminergic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Both pimavanserin and M100907 protected dopaminergic neurons against MPP+-induced cell death. The neuroprotective effects of pimavanserin required signaling through the extracellular signal-regulated kinase 1/2 pathway, restored mitochondrial function, and reduced oxidative stress. Further investigation showed that pimavanserin promotes the release of brain-derived neurotrophic factor and glial-derived neurotrophic factor (GDNF) and that the neuroprotective effects of pimavanserin were blocked by antibodies to GDNF but not by anti-tyrosine receptor kinase B receptor antibodies. Thus, pimavanserin induces release of neurotrophic factors and protects dopaminergic neurons against MPP+ toxicity in a GDNF-dependent manner.


Assuntos
1-Metil-4-fenilpiridínio , Fármacos Neuroprotetores , 1-Metil-4-fenilpiridínio/toxicidade , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fármacos Neuroprotetores/farmacologia , Piperidinas , Ureia/análogos & derivados
3.
Forensic Sci Int ; 317: 110553, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33160102

RESUMO

New psychoactive substances (NPS) appear on the recreational market on a monthly basis, with unclear toxicology, resulting in an increasing number of fatalities. Identification of drug targets and potencies is crucial for understanding and treating intoxications and for scheduling processes. In this study 60 NPS and metabolites belonging to opioids, cannabinoids and serotonergic hallucinogens classes were screened for in vitro activation of the µ-opioid, CB1, 5-HT1A and 5-HT2A receptors using the AequoZen cell system. Fentanyl and NBOMe analogues were chosen for full dose-response characterization of the µ-opioid and 5-HT2A receptors, respectively. Most substances activated their corresponding target receptor. The most potent µ-opioid receptor agonists were 2-fluorofentanyl (EC50 = 1.0 nM), carfentanil (EC50 = 2.7 nM) and acrylfentanyl (EC50 = 2.8 nM) and in total a >1500-fold difference was seen among the tested compounds. Moreover, furanylfentanyl, 4-methoxybutyrylfentanyl and valerylfentanyl acted as partial agonists of the µ-receptor. On the 5-HT2A receptor, bromo-dragonfly showed the highest potency (EC50 = 0.05 nM, 400 times more potent than LSD), followed by most NBOMe compounds with EC50 values ranging from 0.11 nM (for 25N-NBOMe) to 1.3 nM (for 25T4-NBOMe)). Off-target activation of the µ-opioid receptor was identified for piperazines, phenethylamines (in particular NBOMe and 2C compounds) and tryptamines. Moreover, the synthetic cannabinoid metabolite 3-carboxy indole PB-22 activated the 5-HT2A receptor. Bromo-dragonfly was the only compound that activated all four receptors. These results highlight the possible interplay of known and unknown NPS targets and unveil its complexity. Moreover, the detailed, quantitative information presented facilitates our further understanding of NPS toxicology.


Assuntos
Psicotrópicos/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Fentanila/análogos & derivados , Fentanila/farmacologia , Humanos
4.
Neuropharmacology ; 113(Pt A): 502-510, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27816502

RESUMO

The substituted amphetamine, 2,5-dimethoxy-4-iodoamphetamine (DOI), is a hallucinogen that has been used to model a variety of psychiatric conditions. Here, we studied the effect of DOI on neural activity recorded simultaneously in the primary motor cortex (M1) and dorsal striatum of freely behaving FvB/N mice. DOI significantly decreased the firing rate of individually isolated neurons in M1 and dorsal striatum relative to pre-drug baseline. It also induced a bursting pattern of activity by increasing both the number of spikes within a burst and burst duration. In addition, DOI increased coincident firing between simultaneously recorded neuron pairs within the striatum and between M1 and dorsal striatum. Local field potential (LFP) activity also increased in coherence between M1 and dorsal striatum after DOI in the low frequency gamma band (30-50 Hz), while corticostriatal coherence in delta, theta, alpha, and beta activity decreased. We also assessed corticostriatal LFP activity in relation to the DOI-induced head-twitch response (HTR), a readily identifiable behavior used to assess potential treatments for the conditions it models. The HTR was associated with increased delta and decreased theta power in both M1 and dorsal striatum. Together, our results suggest that DOI dysregulates corticostriatal communication and that the HTR is associated with this dysregulation.


Assuntos
Anfetaminas/toxicidade , Comportamento Exploratório/fisiologia , Alucinógenos/toxicidade , Movimentos da Cabeça/fisiologia , Córtex Motor/fisiologia , Neostriado/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Movimentos da Cabeça/efeitos dos fármacos , Masculino , Camundongos , Córtex Motor/efeitos dos fármacos , Neostriado/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa