RESUMO
OBJECTIVE: To investigate the effects of cannabidiol (CBD) on emotional and cognitive symptoms in rats with intra-nigral 6-hydroxydopamine (6-OHDA) lesions. METHODS: Adult male Wistar rats received bilateral intranigral 6-OHDA infusions and were tested in a battery of behavioural paradigms to evaluate non-motor symptoms. The brains were obtained to evaluate the effects of CBD on hippocampal neurogenesis. RESULTS: 6-OHDA-lesioned rats exhibited memory impairments and despair-like behaviour in the novelty-suppressed feeding test and forced swim test, respectively. The animals also exhibited dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc), striatum, and ventral tegmental area and a reduction of hippocampal neurogenesis. CBD decreased dopaminergic neuronal loss in the SNpc, reduced the mortality rate and decreased neuroinflammation in 6-OHDA-lesioned rats. In parallel, CBD prevented memory impairments and attenuated despair-like behaviour that were induced by bilateral intranigral 6-OHDA lesions. Repeated treatment with CBD favoured the neuronal maturation of newborn neurons in the hippocampus in Parkinsonian rats. CONCLUSION: The present findings suggest a potential beneficial effect of CBD on non-motor symptoms induced by intra-nigral 6-OHDA infusion in rats.
Assuntos
Canabidiol , Modelos Animais de Doenças , Hipocampo , Neurogênese , Oxidopamina , Transtornos Parkinsonianos , Ratos Wistar , Animais , Canabidiol/farmacologia , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ratos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Oxidopamina/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Comportamento Animal/efeitos dos fármacosRESUMO
L-DOPA-induced dyskinesia (LID) is a frequent adverse side effect of L-DOPA treatment in Parkinson's disease (PD). Understanding the mechanisms underlying the development of these motor disorders is needed to reduce or prevent them. We investigated the role of TrkB receptor in LID, in hemiparkinsonian mice treated by chronic L-DOPA administration. Repeated L-DOPA treatment for 10 days specifically increased full-length TrkB receptor mRNA and protein levels in the dopamine-depleted dorsal striatum (DS) compared to the contralateral non-lesioned DS or to the DS of sham-operated animals. Dopamine depletion alone or acute L-DOPA treatment did not significantly increase TrkB protein levels. In addition to increasing TrkB protein levels, chronic L-DOPA treatment activated the TrkB receptor as evidenced by its increased tyrosine phosphorylation. Using specific agonists for the D1 or D2 receptors, we found that TrkB increase is D1 receptor-dependent. To determine the consequences of these effects, the TrkB gene was selectively deleted in striatal neurons expressing the D1 receptor. Mice with TrkB floxed gene were injected with Cre-expressing adeno-associated viruses or crossed with Drd1-Cre transgenic mice. After unilateral lesion of dopamine neurons in these mice, we found an aggravation of axial LID compared to the control groups. In contrast, no change was found when TrkB deletion was induced in the indirect pathway D2 receptor-expressing neurons. Our study suggests that BDNF/TrkB signaling plays a protective role against the development of LID and that agonists specifically activating TrkB could reduce the severity of LID.
Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Animais , Levodopa/toxicidade , Antiparkinsonianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Receptor trkB/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D2/metabolismo , Oxidopamina/farmacologiaRESUMO
Parkinson's disease causes prominent difficulties in the generation and execution of voluntary limb movements, including regulation of distal muscles and coordination of proximal and distal movement components to achieve accurate grasping. Difficulties with manual dexterity have a major impact on activities of daily living. We used extracellular single neuron recordings to investigate the neural underpinnings of parkinsonian movement deficits in the motor cortex of chronic unilateral 6-hydroxydopamine lesion male rats performing a skilled reach-to-grasp task the. Both normal movements and parkinsonian deficits in this task have striking homology to human performance. In lesioned animals there were several differences in the activity of cortical neurons during reaches by the affected limb compared with control rats. These included an increase in proportions of neurons showing rate decreases, along with increased amplitude of their average rate-decrease response at specific times during the reach, suggesting a shift in the balance of net excitation and inhibition of cortical neurons; a significant increase in the duration of rate-increase responses, which could result from reduced coupling of cortical activity to specific movement components; and changes in the timing and incidence of neurons with pure rate-increase or biphasic responses, particularly at the end of reach when grasping would normally be occurring. The changes in cortical activity may account for the deficits that occur in skilled distal motor control following dopamine depletion, and highlight the need for treatment strategies targeted toward modulating cortical mechanisms for fine distal motor control in patients.SIGNIFICANCE STATEMENT We show for the first time in a chronic lesion rat model of Parkinson's disease movement deficits that there are specific changes in motor cortex neuron activity associated with the grasping phase of a skilled motor task. Such changes provide a possible mechanism underpinning the problems with manual dexterity seen in Parkinson's patients and highlight the need for treatment strategies targeted toward distal motor control.
Assuntos
Força da Mão/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Doença Crônica , Modelos Animais de Doenças , Masculino , Córtex Motor/patologia , Neurônios/patologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/patologia , Ratos , Ratos WistarRESUMO
Parkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model. LFPs were recorded in resting and walking states, before and after unilateral 6-hydroxydopamine lesion. The hemiparkinsonian state was characterized by increased oscillatory activity in the 20-40 Hz range in resting and walking states, and increased interhemispheric coupling (phase lag index) that was more widespread at rest than during walking. Spectral Granger-causality analysis revealed that the change in symmetric functional connectivity comprised profound reorganization of hierarchical organization and directed influence patterns. First, in the lesioned hemisphere, the more anterior, nonprimary motor areas located at the top of the cortical hierarchy (i.e., receiving many directed influences) tended to increase their directed influence onto the posterior primary motor and somatosensory areas. This enhanced influence of "higher" areas may be related to the loss of motor control due to the 6-OHDA lesion. Second, the drive from the nonlesioned toward the lesioned hemisphere (in particular to striatum) increased, most prominently during walking. The nature of these adaptations (disturbed signaling or compensation) is discussed. The present study demonstrates that hemiparkinsonism is associated with a profound reorganization of the hierarchical organization of directed influence patterns among brain areas, perhaps reflecting compensatory processes.SIGNIFICANCE STATEMENT Parkinson's disease classically first becomes manifest in one hemibody before affecting both sides, suggesting that degeneration is asymmetrical. Our results suggest that asymmetrical degeneration of the dopaminergic system induces an increased drive from the nonlesioned toward the lesioned hemisphere and a profound reorganization of functional cortical hierarchical organization, leading to a stronger directed influence of hierarchically higher placed cortical areas over primary motor and somatosensory cortices. These changes may represent a compensatory mechanism for loss of motor control as a consequence of dopamine depletion.
Assuntos
Corpo Estriado/fisiopatologia , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Corpo Estriado/efeitos dos fármacos , Masculino , Córtex Motor/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacosRESUMO
Our aim was to apply a robust non-drug induced sensorimotor test battery to assess the efficacy of neurorestorative therapies on the motor deficits caused by partial unilateral 6-OHDA lesion mimicking early stage PD. Since the 6-OHDA lesion protocols to induce partial DA depletion in striatum vary extensively between laboratories, we evaluated the associations between different intrastriatal 6-OHDA doses (1 X 0-20 and 2 X 0-30 µg), striatal DA depletion (HPLC-ECD) and D-amphetamine induced rotation to identify a lesion protocol that would produce 40-60% striatal DA depletion. Doses ≥ 6 µg produced a significant DA depletion (ANOVA, P < 0.0001). 6-OHDA dose range (6-14 µg) causing 40-60% DA depletion induced very variable rotational responses. Next, intrastriatal 1 × 10 and 1 × 14 µg doses were compared with a full lesion (10 µg into the medial forebrain bundle) with regard to their effects on adjusting step, cylinder, and vibrissae test performance. A combined ipsilateral score (average of each test) was found more sensitive in distinguishing between different lesions than any test alone. Finally, five-week treadmill exercise starting two weeks post-lesion was able to restore impaired limb use (combined score; mixed model, P < 0.05) and striatal DA depletion (ANOVA, P < 0.05) in rats with partial lesion (1 × 10 µg). Notably, D-amphetamine induced rotation significantly decreased between weeks one to seven post-lesion (t-test, P < 0.01). In conclusion, intrastriatal 1 × 10 µg of 6-OHDA produces 40-60% striatal DA depletion robustly, and the combined ipsilateral score provides an efficient means for testing of the efficacy of neurorestorative or neuroprotective treatments for PD. © 2017 Wiley Periodicals, Inc.
Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Motores/induzido quimicamente , Transtornos Motores/etiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , RatosRESUMO
Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.
Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/transplante , Plasticidade Neuronal/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/terapia , Análise de Variância , Animais , Western Blotting , Dopamina/metabolismo , Embrião de Mamíferos/citologia , Feminino , Imuno-Histoquímica , Potenciação de Longa Duração/fisiologia , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Indazóis/farmacologia , Levodopa/efeitos adversos , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Levodopa/administração & dosagem , Masculino , Ratos , Ratos Wistar , Regulação para CimaRESUMO
Levodopa is the most effective therapy for the motor deficits of Parkinson's disease (PD), but long term treatment leads to the development of L-DOPA-induced dyskinesia (LID). Our previous studies indicate enhanced excitability of striatal cholinergic interneurons (ChIs) in mice expressing LID and reduction of LID when ChIs are selectively ablated. Recent gene expression analysis indicates that stimulatory H2 histamine receptors are preferentially expressed on ChIs at high levels in the striatum, and we tested whether a change in H2 receptor function might contribute to the elevated excitability in LID. Using two different mouse models of PD (6-hydroxydopamine lesion and Pitx3(ak/ak) mutation), we chronically treated the animals with either vehicle or l-DOPA to induce dyskinesia. Electrophysiological recordings indicate that histamine H2 receptor-mediated excitation of striatal ChIs is enhanced in mice expressing LID. Additionally, H2 receptor blockade by systemic administration of famotidine decreases behavioral LID expression in dyskinetic animals. These findings suggest that ChIs undergo a pathological change in LID with respect to histaminergic neurotransmission. The hypercholinergic striatum associated with LID may be dampened by inhibition of H2 histaminergic neurotransmission. This study also provides a proof of principle of utilizing selective gene expression data for cell-type-specific modulation of neuronal activity.
Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Doença de Parkinson/complicações , Receptores Histamínicos H2/metabolismo , Potenciais de Ação , Animais , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Diciclomina/administração & dosagem , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Famotidina/administração & dosagem , Antagonistas dos Receptores H2 da Histamina/farmacologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Levodopa , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.
Assuntos
Discinesia Induzida por Medicamentos , Neuroesteroides , Doença de Parkinson , Masculino , Ratos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/patologia , Dutasterida/metabolismo , Dutasterida/farmacologia , Dutasterida/uso terapêutico , Oxidopamina/toxicidade , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Antiparkinsonianos/efeitos adversos , Modelos Animais de DoençasRESUMO
RATIONALE: The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES: The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS: The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS: Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS: The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Assuntos
Levodopa , Doença de Parkinson , Animais , Ratos , Levodopa/farmacologia , Oxidopamina , Antidepressivos Tricíclicos/farmacologia , Doença de Parkinson/tratamento farmacológico , Desipramina/farmacologia , Dopamina/metabolismo , Serotonina/metabolismo , Antipruriginosos/metabolismo , Antipruriginosos/farmacologia , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Antiparkinsonianos/farmacologia , Antiparkinsonianos/metabolismo , Corpo Estriado , Norepinefrina/metabolismoRESUMO
After unilateral lesion of the medial forebrain bundle (MFB) by 6-OHDA rats exhibit lateralized deficits in spontaneous behavior or apomorphine-induced rotations. We investigated whether such lateralization is attenuated by either deep brain stimulation (DBS) or glutamatergic neurotransmission in the inferior colliculus (IC) of Wistar rats. Intracollicular DBS did not affect spontaneous lateralization but attenuated apomorphine-induced rotations. Spontaneous lateralization disappeared after both glutamatergic antagonist MK-801 or the agonist NMDA microinjected in the IC. Apomorphine-induced rotations were potentiated by MK-801 but were not affected by NMDA intracollicular microinjection. After injecting a bidirectional neural tract tracer into the IC, cell bodies and/or axonal fibers were found in the periaqueductal gray, superior colliculus, substantia nigra, cuneiform nucleus and pedunculo-pontine tegmental nucleus, suggesting the involvement of these structures in the motor improvement after IC manipulation. Importantly, the side of the IC microinjection regarding the lesion (ipsi- or contralateral) is particularly important and this effect may not involve the neostriatum directly.Significance StatementThe inferior colliculus, usually viewed as an auditory structure, when properly manipulated may counteract motor deficits in Parkinsonian rats. Indeed, the present study showed that 30 Hz deep brain stimulation or glutamatergic neural network in the inferior colliculus reduced body asymmetry induced by medial forebrain bundle unilateral 6-OHDA lesion in rats, an animal model of Parkinsonism. Understanding how glutamatergic mechanisms in the inferior colliculus influence motor control, classically attributed to the basal nuclei circuitry, could be useful in the development of new therapeutics to treat Parkinson's disease and other motor disorders.
RESUMO
BACKGROUND: Subthalamic nucleus (STN) neurons undergo changes in their pattern of activity and morphology during the clinical course of Parkinson's disease (PD). Striatal dopamine depletion and hyperactivity of neurons in the parafascicular nucleus (Pf) of the intralaminar thalamus are predicted to contribute to the STN changes. OBJECTIVE: This study investigated possible morphological and neurochemical changes in STN neurons in a rat model of unilateral, nigral dopamine neuron loss, in relation to previously documented alterations in Pf neurons. METHODS: Male Sprague-Dawley rats received a unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNpc). Rats were randomly divided into two groups (6/group) for study at 1 and 5 months by post-treatment. The extent of SNpc dopamine neuron damage was assessed in an amphetamine-induced rotation test and postmortem assessment of tyrosine hydroxylase mRNA levels using in situ hybridization histochemistry. Neural cross-sectional measurements and assessment of vesicular glutamate transporter-2 (vGlut2) mRNA levels were performed to measure the impact on neurons in the STN. RESULTS: A unilateral SNpc dopaminergic neuron lesion significantly decreased the cross-sectional area of STN neurons ipsilateral to the lesion, at 1 month (P < 0.05) and 5 months (P < 0.01) post-lesion, while bilateral vGlut2 mRNA levels in STN neurons were unaltered. CONCLUSIONS: Decreased size of STN neurons in the presence of sustained vGlut2 mRNA levels following a unilateral SNpc 6-OHDA lesion, indicate altered STN physiology. This study presents further details of changes within the STN, coincident with observed alterations in Pf neurons and behaviour. DATA AVAILABILITY: The data associated with the findings of this study are available from the corresponding author upon request.
RESUMO
Parkinson's disease (PD) is characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra, leading to striatal dopamine depletion. A partial unilateral striatal 6-hydroxydopamine (6-OHDA) lesion causes 40-60% dopamine depletion in the lesioned rat striatum, modeling the early stage of PD. In this study, we explored the connectivity between the brain regions in partially 6-OHDA lesioned male Wistar rats under urethane anesthesia using functional magnetic resonance imaging (fMRI) at 5 weeks after the 6-OHDA infusion. Under urethane anesthesia, the brain fluctuates between the two states, resembling rapid eye movement (REM) and non-REM sleep states. We observed clear urethane-induced sleep-like states in 8/19 lesioned animals and 8/18 control animals. 6-OHDA lesioned animals exhibited significantly lower functional connectivity between the brain regions. However, we observed these differences only during the REM-like sleep state, suggesting the involvement of the nigrostriatal dopaminergic pathway in REM sleep regulation. Corticocortical and corticostriatal connections were decreased in both hemispheres, reflecting the global effect of the lesion. Overall, this study describes a promising model to study PD-related sleep disorders in rats using fMRI.
Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Sono/efeitos dos fármacos , Uretana/farmacologia , Anestesia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxidopamina , Transtornos Parkinsonianos/diagnóstico por imagem , Ratos Wistar , Descanso , Sono/fisiologiaRESUMO
Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.
Assuntos
Amitriptilina/metabolismo , Antidepressivos Tricíclicos/metabolismo , Corpo Estriado/metabolismo , Levodopa/metabolismo , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Corpo Estriado/efeitos dos fármacos , Interações Medicamentosas/fisiologia , Levodopa/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Wistar , Rotação , Substância Negra/efeitos dos fármacosRESUMO
BACKGROUND: Although Parkinson's disease (PD) is characterized by progressive neurodegeneration of multiple neurotransmitter systems, 6-hydroxydopamine (6-OHDA) as a model substance is mainly used to selectively damage the nigrostriatal dopaminergic neurons and induce parkinsonian-like motor disturbances in rats. We hypothesized that high doses of this neurotoxin affecting other monoaminergic systems may also evoke the depressive-like behavior. METHODS: The impact of 6-OHDA (8, 12, 16µg/4µl) administered unilaterally into the medial forebrain bundle on the sucrose solution intake (a measure of anhedonia) and on the tissue levels of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in the striatum (STR), substantia nigra (SN), prefrontal cortex (PFC) and hippocampus (HIP) was examined in rats pretreated or non-pretreated with desipramine. RESULTS: The highest dose of 6-OHDA reduced the preference for 3% sucrose solution both in rats without and with desipramine pretreatment. All used doses of 6-OHDA dramatically decreased DA content in the studied brain structures on the ipsilateral side. NA levels were severely decreased in the ipsilateral STR, HIP and PFC of rats non-pretreated with desipramine and to a much lesser extent in those pretreated with desipramine. In the SN, moderate decreases in NA level were found both in rats pretreated and non-pretreated with desipramine. Higher doses of 6-OHDA reduced 5-HT content in the ipsilateral STR, HIP and PFC, but not in the SN, only in rats non-pretreated with desipramine. CONCLUSIONS: Administration of the highest dose of 6-OHDA without desipramine pretreatment evoked neurochemical and behavioral changes resembling the advanced PD with coexisting depression.
Assuntos
Transtorno Depressivo/induzido quimicamente , Feixe Prosencefálico Mediano/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Animais , Comportamento Animal , Dopamina/metabolismo , Masculino , Norepinefrina/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Ratos Wistar , Serotonina/metabolismoRESUMO
The most effective treatment for Parkinson's disease (PD), l-DOPA, induces dyskinesia after prolonged use. We have previously shown that in 6-hydroxydopamine (6-OHDA) lesioned rats rendered dyskinetic by prolonged l-DOPA administration, lesion of the subthalamic nucleus (STN) reduces not only dyskinesias but also buspirone antidyskinetic effect. This study examined the effect of buspirone on STN neuron activity. Cell-attached recordings in parasagittal slices from naïve rats showed that whilst serotonin excited the majority of STN neurons, buspirone showed an inhibitory main effect but only in 27% of the studied cells which was prevented by the 5-HT1A receptor selective antagonist WAY-100635. Conversely, single-unit extracellular recordings were performed in vivo on STN neurons from four different groups, i.e., control, chronically treated with l-DOPA, 6-OHDA lesioned and lesioned treated with l-DOPA (dyskinetic) rats. In control animals, systemic-buspirone administration decreased the firing rate in a dose-dependent manner in every cell studied. This effect, prevented by WAY-100635, was absent in 6-OHDA lesioned rats and was not modified by prolonged l-DOPA administration. Altogether, buspirone in vivo reduces consistently the firing rate of the STN neurons through 5-HT1A receptors whereas ex vivo buspirone seems to affect only a small population of STN neurons. Furthermore, the lack of effect of buspirone in 6-OHDA lesioned rats, suggests the requirement of not only the activation of 5-HT1A receptors but also an intact nigrostriatal pathway for buspirone to inhibit the STN activity.
Assuntos
Buspirona/farmacologia , Neurônios/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Núcleo Subtalâmico/citologia , Potenciais de Ação/efeitos dos fármacos , Adrenérgicos/toxicidade , Inibidores da Captação Adrenérgica/farmacologia , Animais , Desipramina/farmacologia , Modelos Animais de Doenças , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/efeitos adversos , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Oxidopamina/toxicidade , Ratos , Ratos Sprague-DawleyRESUMO
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Assuntos
Mesencéfalo/patologia , Proteínas da Mielina/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Animais , Antígenos Nucleares/metabolismo , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Dopamina/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Proteínas Nogo , Oxidopamina , Transtornos Parkinsonianos/metabolismo , Fotomicrografia , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/patologia , Estilbamidinas , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Aggregation of α-synuclein (ASYN) is considered a major determinant of neuronal loss in Parkinson's disease (PD). E6-associated protein (E6-AP), an E3 ubiquitin protein ligase, has been known to promote the degradation of α-synuclein. The aim of this study was to assess the effects of the sesquiterpene lactone reynosin on dopamine (DA)-induced neuronal toxicity and regulation of E6-associated protein and α-synuclein proteins in both in vitro and in vivo models of Parkinson's disease. Usi"ng flow cytometry and western blot analysis, we determined that reynosin significantly protected both against cell death from dopamine-induced toxicity in human neuroblastoma SH-SY5Y cells and against the loss of tyrosine hydroxylase (TH)-positive cells in 6-hydroxydopamine (6-OHDA)-lesioned rats (a rodent Parkinson's disease model system). In addition, reynosin made up-regulation of E6-associated protein expression and down-regulation of the over-expression of α-synuclein protein in both dopamine-treated SH-SY5Y cells and 6-hydroxydopamine-lesioned rats. These results suggest that the protective effect of reynosin against dopamine-induced neuronal cell death may be due to the reciprocal up-regulation of E6-associated protein and down-regulation of α-synuclein protein expression.
Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Sesquiterpenos/farmacologia , Ubiquitina-Proteína Ligases/biossíntese , alfa-Sinucleína/biossíntese , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo , Citometria de Fluxo , Humanos , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para CimaRESUMO
Striatal dopaminergic denervation leads to a change in afferent activity within the basal ganglia. Coupled with the effect of local dopaminergic denervation in the subthalamic nucleus, this is likely to affect the responsiveness of subthalamic neurons to their hyperdirect inputs in Parkinson's disease. Therefore, in this report, we investigated subthalamic nucleus responses to visual stimuli relayed by one such input - the superior colliculus - in 6-hydroxydopamine (6-OHDA)-lesioned rats. We used a protocol where the superior colliculus was selectively unlocked from the inhibitory effect of anesthesia with an injection of bicuculline, attenuating GABAergic inhibition in the colliculus, which arises predominantly from the substantia nigra pars reticulata. We found that visual responses in the superior colliculus were facilitated by partial or total lesions of dopaminergic neurons in the substantia nigra pars compacta, once the colliculus was disinhibited by bicuculline. Responses were faster, larger in amplitude and lasted longer compared to those in control rats. In the subthalamic nucleus, visual responses were also increased in amplitude and magnitude in partial or total lesioned groups. A classic hypothesis in Parkinson's disease suggests that following dopaminergic denervation, the discharge of cells in the substantia nigra pars reticulata increases, thereby intensifying the inhibitory influence that this structure exerts on its targets in the thalamus and brainstem. Our results suggest that neuroadaptations may have taken place within the superior colliculus in order to maintain normal function in the face of increased inhibitory tone coming from the substantia nigra pars reticulata, which once reduced, gave rise to facilitated responding. This facilitated responding in the superior colliculus then appears to lead to facilitated responding in the subthalamic nucleus.
Assuntos
Adaptação Fisiológica/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Colículos Superiores/fisiopatologia , Percepção Visual/fisiologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Masculino , Ratos , Ratos Long-EvansRESUMO
OBJECTIVE: Recently, the serotonin-dopamine interaction is being regarded as a possible mechanism for both less extrapyramidal symptoms and good therapeutic effect on negative symptoms which are outstanding advantages of atypical antipsychotics. The goal of the study was to further define serotonin dopamine interaction in three different brain area of rats ; prefrontal cortex, striatum and nucleus accumbens. METHOD: The rats used in this study weighed 150-300gm. Under the aesthesia with pentothal sodium(25 mg/kg), stainless steel cannula was inserted in the right substantia nigra according to atlas(Paxinous and Watson) and 6-OHDA was injected at the rate of 1 mul/min to make a unilateral substantia nigra lesion. A week later, apomorphine (s. c. 0.1 mg/kg) was injected through the cannula and the rats with circling behavior counting more than 200 for an hour were selected for the study. Three weeks after that, the rats were further divided into 3 groups according to the brain area that permanent stainless steel cannula was implanted : prefrontal cortex group, striatum group and nucleus accumbens group. Within each group comparison was done between the number of circling behavior obtained by the injection of vehicle plus apomorphine and the one obtained by the injection of ritanserin plus apomorphine. Wilcoxon signed ranks test was used in data-analysis. RESULTS: The effect of ritanserin on the circling behavior in prefrontal cortex was absent but in striatum and nucleus accumbens, increasing effect was noted. CONCLUSIONS: It might be suggested that serotonin has an inhibitory control on dopaminergic function in striatum and nucleus accumbens.