Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5984-5998, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921028

RESUMO

Fucoxanthin is the most abundant carotenoid found in marine brown algae that exhibits several healthy properties. Dietary fucoxanthin is metabolized in the intestine, plasma, and other tissues to various metabolites, including fucoxanthinol. In this regard, the contribution of fucoxanthinol to the healthy properties of its precursor, fucoxanthin, against pathogenetic events associated with neurodegenerative diseases remains unexplored. Here, we evaluated and compared the antioxidant and neuroprotective effects of the carotenoids fucoxanthin and fucoxanthinol in in vitro models of Alzheimer's (AD) and Parkinson's (PD) disease. Neuronal SH-SY5Y cells were used to evaluate the antioxidant properties of the carotenoids against ABTS radical in the membrane and cytoplasm and oxidative stress elicited by tert-butyl hydroperoxide using the 2',7'-dichlorodihydrofluorescein diacetate probe. We also assessed the ability of the carotenoids to increase the glutathione (GSH) and activate the Nrf2/Keap1/ARE pathway using the monochlorobimane probe and western blotting method, respectively. The neuroprotective effects of the carotenoids against the neurotoxicity generated by oligomers of Beta-Amyloid (1-42) peptide (OAß) and 6-hydroxydopamine (6-OHDA), which are neurotoxins of AD and PD, respectively, were finally evaluated in the same neuronal cells using the thiazolyl blue tetrazolium bromide assay. Both carotenoids could reach the cytoplasm, which explains the mainly free radical scavenging activity at this level. Notably, fucoxanthinol had higher and lower antioxidant activity than fucoxanthin at extracellular and cellular levels. Although studied carotenoids exerted the ability to activate the Nrf2/Keap1/ARE pathway, leading to an increase of intracellular GSH, our results suggested that the antioxidant activity of the carotenoids could be mainly attributed to their radical scavenging activity in neuronal membrane and cytoplasm, where they accumulate. Fucoxanthinol also shared similar neuroprotective effects as fucoxanthin against the neurotoxicity generated by OAß and 6-OHDA, suggesting a potential neuroprotective contribution to the action of fucoxanthin administered as a food supplement in in vivo experimental models. These results encourage further research to evaluate the bioavailability of fucoxanthinol and other metabolites of fucoxanthin at the brain level to elucidate the dietary neuroprotective potential of fucoxanthin.

2.
Eur J Neurosci ; 59(1): 132-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072889

RESUMO

The existent pre-clinical models of Parkinson's disease do not simultaneously recapitulate severe degeneration of dopamine neurons and the occurrence of alpha-synuclein (aSyn) aggregation in one study system. In this study, we injected aSyn pre-formed fibrils (PFF) and 6-hydroxydopamine (6-OHDA) unilaterally into the striatum of C57BL/6 wild-type male mice at an interval of 2 weeks to induce aggregation of aSyn protein and trigger the loss of dopamine neurons simultaneously in one model and studied the behavioural effects of the combination in these mice. 6-OHDA was tested at three different doses, and 2 µg of 6-OHDA combined with PFF-induced aSyn aggregation was found to produce the most optimal disease phenotype. At 14 weeks timepoint, mice injected with a combination of PFF and 6-OHDA sustained significant damage to the nigrostriatal pathway and exhibited aSyn-positive aggregation. Our data suggest that the neurons that formed large aSyn aggregates were particularly vulnerable to 6-OHDA-induced degeneration. We also demonstrate the manifestation of a relatively aggressive pathology in 2- to 4-month-old mice, as compared to younger 7- to 9-week-old ones. Furthermore, cerebral dopamine neurotrophic factor (CDNF) administered intrastriatally rescued dopamine neurons and motor behaviour of the animals to some extent from 6-OHDA toxicity. However, no such effect could be seen in the novel 6-OHDA + PFFs combination model. For the first time, we demonstrate the combined effect of PFF and 6-OHDA simultaneously in one model. We further discuss the scope for further optimizing this combination model to develop it as a promising pre-clinical platform for drug screening and development.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Oxidopamina , Doença de Parkinson/metabolismo
3.
Cytotherapy ; 26(9): 1052-1061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38739074

RESUMO

BACKGROUND: In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS: DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS: Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of ßIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS: Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.


Assuntos
Diferenciação Celular , Polpa Dentária , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Células-Tronco Mesenquimais , Oxidopamina , Doença de Parkinson , Humanos , Animais , Polpa Dentária/citologia , Oxidopamina/farmacologia , Ratos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Doença de Parkinson/terapia , Masculino , Células Estromais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Cultivadas
4.
Neurochem Res ; 49(8): 2179-2196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834845

RESUMO

There is some evidence that the serotonin receptor subtype 7 (5-HT7) could be new therapeutic target for neuroprotection. The aim of this study was to compare the neuroprotective and neurite outgrowth potential of new 5-HT7 receptor agonists (AH-494, AGH-238, AGH-194) with 5-CT (5-carboxyamidotryptamine) in human neuroblastoma SH-SY5Y cells. The results revealed that 5-HT7 mRNA expression was significantly higher in retinoic acid (RA)-differentiated cells when compared to undifferentiated ones and it was higher in cell cultured in neuroblastoma experimental medium (DMEM) compared to those placed in neuronal (NB) medium. Furthermore, the safety profile of compounds was favorable for all tested compounds at concentration used for neuroprotection evaluation (up to 1 µM), whereas at higher concentrations (above 10 µM) the one of the tested compounds, AGH-194 appeared to be cytotoxic. While we observed relatively modest protective effects of 5-CT and AH-494 in UN-SH-SY5Y cells cultured in DMEM, in UN-SH-SY5Y cells cultured in NB medium we found a significant reduction of H2O2-evoked cell damage by all tested 5-HT7 agonists. However, 5-HT7-mediated neuroprotection was not associated with inhibition of caspase-3 activity and was not observed in RA-SH-SY5Y cells exposed to H2O2. Furthermore, none of the tested 5-HT7 agonists altered the damage induced by 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium ion (MPP +) and doxorubicin (Dox) in UN- and RA-SH-SY5Y cells cultured in NB. Finally we showed a stimulating effect of AH-494 and AGH-194 on neurite outgrowth. The obtained results provide insight into neuroprotective and neurite outgrowth potential of new 5-HT7 agonists.


Assuntos
Neuroblastoma , Crescimento Neuronal , Fármacos Neuroprotetores , Receptores de Serotonina , Agonistas do Receptor de Serotonina , Humanos , Receptores de Serotonina/metabolismo , Fármacos Neuroprotetores/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Serotonina/análogos & derivados
5.
Neurochem Res ; 49(4): 895-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117448

RESUMO

Naturally occurring peptides, such as rubiscolins derived from spinach leaves, have been shown to possess some interesting activities. They exerted central effects, such as antinociception, memory consolidation and anxiolytic-like activity. The fact that rubiscolins are potent even when given orally makes them very promising drug candidates. The present work tested whether rubiscolin-6 (R-6, Tyr-Pro-Leu-Asp-Leu-Phe) analogs have neuroprotective and anti-inflammatory effects. These hypotheses were tested in the 6-hydroxydopamine (6-OHDA) injury model of human neuroblastoma SH-SY5Y and lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The determination of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), Caspase-3 activity, lipid peroxidation and nitric oxide (NO) production allowed us to determine the effects of peptides on hallmarks related to Parkinson's Disease (PD) and inflammation. Additionally, we investigated the impact of R-6 analogs on serine-threonine kinase (also known as protein kinase B, AKT) and mammalian target of rapamycin (mTOR) activation. The treatment with analogs 3 (Tyr-Inp-Leu-Asp-Leu-Phe-OH), 5 (Dmt-Inp-Leu-Asp-Leu-Phe-OH) and 7 (Tyr-Inp-Leu-Asp-Leu-Phe-NH2) most effectively prevented neuronal death via attenuation of ROS, mitochondrial dysfunction and Caspase-3 activity. Peptides 5 and 7 significantly increased the protein expression of the phosphorylated-AKT (p-AKT) and phosphorylated-mTOR (p-mTOR). Additionally, selected analogs could also ameliorate LPS-mediated inflammation in macrophages via inhibition of intracellular generation of ROS and NO production. Our findings suggest that R-6 analogs exert protective effects, possibly related to an anti-oxidation mechanism in in vitro model of PD. The data shows that the most potent peptides can inhibit 6-OHDA injury by activating the PI3-K/AKT/mTOR pathway, thus playing a neuroprotective role and may provide a rational and robust approach in the design of new therapeutics or even functional foods.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Fragmentos de Peptídeos , Ribulose-Bifosfato Carboxilase , Humanos , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina/toxicidade , Caspase 3/metabolismo , Lipopolissacarídeos/farmacologia , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Peptídeos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Pharmacol Res ; 209: 107432, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313081

RESUMO

Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracellular α-synuclein (ɑ-syn) aggregates known as Lewy bodies and Lewy neurites. Levels of polyunsaturated fatty acids (PUFAs) have previously been shown to be reduced in the SN of PD patients. G protein-coupled receptor 40 (GPR40) serves as a receptor for PUFAs, playing a role in neurodevelopment and neurogenesis. Additionally, GPR40 has been implicated in several neuropathological conditions, such as apoptosis and inflammation, suggesting its potential as a therapeutic target in PD. In this study, we investigated the neuroprotective effects of the GPR40 agonist, TUG469 in PD models. Our results demonstrated that TUG469 reduces the neurotoxicity induced by 6-OHDA in SH-SY5Y cells. In 6-OHDA-induced PD model mice, TUG469 treatment improved motor impairment, preserved dopaminergic fibers and cell bodies in the striatum (ST) or SN, and attenuated 6-OHDA-induced microgliosis and astrogliosis in the brain. Furthermore, in a PD model involving the injection of mouse ɑ-syn fibrils into the brain (mPFFs-PD model), TUG469 treatment reduced the levels of pSer129 ɑ-syn, and decreased microgliosis and astrogliosis. Our investigation also revealed that TUG469 modulates inflammasome activation, apoptosis, and autophagy in the 6-OHDA-PD model, as evidenced by the results of RNA-seq and western blotting analyses. In summary, our findings highlight the neuroprotective effects of GPR40 agonists on dopaminergic neurons and their potential as therapeutic agents for PD. These results underscore the importance of targeting GPR40 in PD treatment, particularly in mitigating neuroinflammation and preserving neuronal integrity.

7.
Mol Biol Rep ; 51(1): 819, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017801

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS: SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION: These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.


Assuntos
Apoptose , Sobrevivência Celular , NF-kappa B , Estresse Oxidativo , Oxidopamina , Doença de Parkinson , Espécies Reativas de Oxigênio , Sesquiterpenos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Sesquiterpenos/farmacologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Oxidopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia
8.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38682230

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Oxidopamina , Núcleo Subtalâmico , Animais , Oxidopamina/farmacologia , Masculino , Comportamento Animal/fisiologia , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Aprendizagem da Esquiva/fisiologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia
9.
Neuromodulation ; 27(3): 489-499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002052

RESUMO

OBJECTIVES: Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS: Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS: In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION: Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Córtex Sensório-Motor , Núcleo Subtalâmico , Ratos , Masculino , Animais , Núcleo Subtalâmico/fisiologia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063235

RESUMO

Among the symptoms of Parkinson's disease (PD), apathy comprises a set of behavioral, affective, and cognitive features that can be classified into several subtypes. However, the pathophysiology and brain regions that are involved in these different apathy subtypes are still poorly characterized. We examined which subtype of apathy is elicited in a mouse model of PD with 6-hydroxydopamine (6-OHDA) lesions and the behavioral symptoms that are exhibited. Male C57/BL6J mice were allocated to sham (n = 8) and 6-OHDA (n = 13) groups and locally injected with saline or 4 µg 6-OHDA bilaterally in the dorsal striatum. We then conducted motor performance tests and apathy-related behavioral experiments. We then pathologically evaluated tyrosine hydroxylase (TH) immunostaining. The 6-OHDA group exhibited significant impairments in motor function. In the behavioral tests of apathy, significant differences were observed between the sham and 6-OHDA groups in the hole-board test and novelty-suppressed feeding test. The 6-OHDA group exhibited impairments in inanimate novel object preference, whereas social preference was maintained in the three-chamber test. The number of TH+ pixels in the caudate putamen and substantia nigra compacta was significantly reduced in the 6-OHDA group. The present mouse model of PD predominantly showed dorsal striatum dopaminergic neuronal loss and a decrease in novelty seeking as a symptom that is related to the cognitive apathy component.


Assuntos
Apatia , Comportamento Animal , Corpo Estriado , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Oxidopamina , Doença de Parkinson , Animais , Oxidopamina/farmacologia , Oxidopamina/efeitos adversos , Apatia/efeitos dos fármacos , Masculino , Camundongos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Atividade Motora/efeitos dos fármacos
11.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201535

RESUMO

In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.


Assuntos
Tomada de Decisões , Modelos Animais de Doenças , Globo Pálido , Doença de Parkinson , Pramipexol , Receptores de Dopamina D3 , Animais , Pramipexol/farmacologia , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tomada de Decisões/efeitos dos fármacos , Globo Pálido/metabolismo , Globo Pálido/efeitos dos fármacos , Masculino , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas , Agonistas de Dopamina/farmacologia , Benzotiazóis/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo
12.
Saudi Pharm J ; 32(3): 101964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328791

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental illness that often emerges in early childhood. The incidence of ASD has shown a notable rise in recent years. ASD is defined by deficits in social communication, and presence of rigid and repetitive behaviors and interests. The underlying mechanisms of ASD remain elusive. Multiple studies have documented the presence of neuroinflammation and increased levels of inflammatory cytokines, specifically, IL-6, TNF, and NF-κB, in various brain regions, including the prefrontal cortex (PFC) and hippocampus in individuals with ASD. Noradrenergic neurons play a crucial role in brain development and the regulation of motor, behavioral, and memory functions. This study sought to examine the impact of intracerebroventricular (icv.) injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), in the caudal dorsal vagal complex A2 neurons on various neuroinflammatory pathways at the hippocampus and PFC in valproic acid (VPA) autistic animal model. This was done in conjunction with an intraperitoneal (i.p.) injection of Lipopolysaccharides (LPS) in animal models with VPA-induced autism. We specifically examined the impact of the caudal fourth ventricle 6-OHDA icv. injection and LPS (i.p.) injection on self-grooming behavior. We measured the mRNA expression of IL-6, TNF-a, and NF-κB using qRT-PCR, and the protein expression of COX-2, GPX-1, p-AMPK, and AMPK using western blot analysis. The self-grooming activity was considerably higher in the combined treatment group (6-OHDA icv. + LPS i.p.) compared to the control group. A substantial increase observed in the expression of IL-6, TNF-α, and NF-κB genes in the PFC of the treatment group that received icv. Administration of 6-OHDA, compared to the control group. The VPA-autism rats that received the combo treatment exhibited a slight increase in the expression level of NF-κB gene in the hippocampus, compared to the control group. At the PFC, we noticed a substantial drop in the expression of the antioxidant protein GPX-1 in the group that received the combo treatment compared to the control group. Our data investigates a novel aspect that the 6-OHDA-induced inhibition of hindbrain A2 neurons could be influencing the neuroinflammatory pathways in the PFC and hippocampus of autistic animal models.

13.
Neurobiol Dis ; 185: 106266, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604316

RESUMO

BACKGROUND: Sensorimotor beta oscillations are increased in Parkinson's disease (PD) due to the alteration of dopaminergic transmission. This electrophysiological read-out is reported both in patients and in animal models such as the 6-OHDA rat model obtained with unilateral nigral injection of 6-hydroxydopamine (6-OHDA). Current treatments, based on dopaminergic replacement, transiently normalize this pathological beta activity and improve patients' quality of life. OBJECTIVES: We wanted to assess in vivo whether the abnormal beta oscillations can be correlated with impaired striatal or cortical excitability of the sensorimotor system and modulated by the pharmacological manipulation of the dopaminergic system. METHODS: In the unilateral 6-OHDA rat model and control animals, we used intra-striatal and intra-cortical single-pulse electrical stimulation (SPES) and concurrent local field potentials (LFP) recordings. In the two groups, we quantified basal cortico-striatal excitability from time-resolved spectral analyses of LFP evoked responses induced remotely by intracerebral stimulations. The temporal dependance of cortico-striatal excitability to dopaminergic transmission was further tested using electrophysiological recordings combined with levodopa injection. RESULTS: LFP evoked responses after striatal stimulation showed a transient reduction of power in a large time-frequency domain in the 6-OHDA group compared to the sham group. This result was specific to the striatum, as no significant difference was observed in cortical LFP evoked responses between the two groups. This impaired striatal excitability in the 6-OHDA group was observed in the striatum at least during the first 3 months after the initial lesion. In addition, the striatum responses to SPES during a levodopa challenge showed a transient potentiation of the decrease of responsiveness in frequencies below 40 Hz. CONCLUSION: The spectral properties of striatal responses to SPES show high sensitivity to dopaminergic transmission in the unilateral 6-OHDA rat model. We thus propose that this approach could be used in preclinical models as a time-resolved biomarker of impaired dopaminergic transmission capable of monitoring progressive neurodegeneration and/or challenges to drug intake.


Assuntos
Doença de Parkinson , Animais , Ratos , Levodopa/farmacologia , Oxidopamina/toxicidade , Qualidade de Vida , Dopamina , Estimulação Elétrica
14.
Mol Biol Rep ; 50(1): 331-338, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331750

RESUMO

BACKGROUND: The purpose of this research was to study whether verbenalin, an iridoid glucoside, and (+)-eudesmin, a furofuran lignan isolated from different plant families, can attenuate cell damage and death induced by 6-hydroxydopamine (6-OHDA) in human neuroblastoma SH-SY5Y cells. METHODS: SH-SY5Y cells were incubated with 6-OHDA (35 µM) for 1 day. Verbenalin and (+)-eudesmin were administrated with various concentrations (1, 2.5, 5, 10, 20, and 50 µM) one hour before the 6-OHDA treatment. After 1 day, cell viability and neuroprotective effect were investigated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Nitrosative stress was determined with measurements of nitric oxide (NO) and 3-nitrotyrosine (3-NT), a biomarker of peroxynitrite formation. RESULTS: We observed that 6-OHDA declined viability and augmented LDH leakage in SH-SY5Y cells. MTT analyses showed that pretreatment with verbenalin and (+)-eudesmin markedly prevented the toxicity due to 6-OHDA (P < 0.05). Verbenalin and (+)-eudesmin suppressed LDH release induced by 6-OHDA (P < 0.01). Although 6-OHDA treatment produced no marked effects on NO levels, (+)-eudesmin at high concentrations (10-50 µM) markedly attenuated NO levels (P < 0.01). There was a significant increase in 3-NT levels with 6-OHDA exposure in cells. Pretreatment with verbenalin, but not (+)-eudesmin, diminished 3-NT levels at low concentrations (1-20 µM) and prevented the cytotoxic effect of 6-OHDA (P < 0.01). CONCLUSION: These results indicated that verbenalin and (+)-eudesmin exert potent cytoprotective activities against cytotoxicity triggered by 6-OHDA in neuroblastoma cells. This is the first report demonstrating that verbenalin may act as a peroxynitrite scavenger.


Assuntos
Lignanas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Oxidopamina/toxicidade , Estresse Nitrosativo , Ácido Peroxinitroso , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Lignanas/farmacologia , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia , Apoptose , Espécies Reativas de Oxigênio/metabolismo
15.
Phytother Res ; 37(7): 2877-2893, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36920348

RESUMO

Parkinson's disease (P.D.) is the second most progressive neurodegenerative disorder in the elderly. Degeneration of dopaminergic (DA) neurons and α-synuclein (α-Syn) accumulated toxicity is the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop the disease progression in P.D. patients. Screening novel and effective drugs in P.D. animal models is time- and cost-consuming. Rose Essential Oil (REO) extracted from Rosa Rugosa species (R. Setate × R. Rugosa). REO contains Citronellol, Geraniol, and Octadiene that possess anti-Aß, anti-oxidative, and anti-depression-like properties, but no reports have defined the REO effect on P.D. yet. The present study examines the REO neuroprotective potential in transgenic Caenorhabditis elegans P.D. models. We observed that REO reduced α-Syn aggregations and diminished DA neuron degenerations induced by 6-OHDA, reduced food-sensing behavioural disabilities, and prolonged the lifespan of the nematode. Moreover, REO augmented the chymotrypsin-like proteasome and SOD-3 activities. Further, we observed the anti-oxidative role of REO by reducing internal cells ROS. Together, these findings supported REO as an anti-PD drug and may exert its effects by lowering oxidative stress via the anti-oxidative pathway.


Assuntos
Óleos Voláteis , Doença de Parkinson , Rosa , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , alfa-Sinucleína/uso terapêutico , Caenorhabditis elegans/metabolismo , Animais Geneticamente Modificados , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Neurônios Dopaminérgicos , Degeneração Neural , Modelos Animais de Doenças
16.
J Formos Med Assoc ; 122(3): 239-248, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36180322

RESUMO

BACKGROUND: Bladder dysfunction is a common non-motor disorder in Parkinson's disease (PD). This study attempted to determine the bladder dysfunction with disease progression in the PD rat model produced from unilateral/bilateral injections of 6-hydroxydopamine (6-OHDA). METHODS: Cystometrographic (CMG) and external urethral sphincter electromyographic (EUS-EMG) measurements were scheduled in a time-course manner to determine the disease timing, onset, and severity. Animals were allotted into normal control, unilateral, bilateral 6-OHDA injected groups and subjected to scheduled CMG, EUS-EMG analyses at weeks 1, 2, and 4. RESULTS: The urodynamic results concluded that voiding efficiency (VE) was reduced in both unilateral and bilateral PD rats at all-time points. VE had decreased from 57 ± 11% to 31 ± 7% in unilateral PD rats and in bilateral PD rats, a decreased VE of 20 ± 6% was observed compared to control and unilateral PD rats. The EMG results in unilateral PD rats indicated declines in bursting period (BP) (3.78-2.94 s), active period (AP) (93.38-88.75 ms), and silent period (SP) (161.62-114.30 ms). A sudden reduction was noticed in BP (3.62-2.82 s), AP (92.21-86.01 ms), and SP (128.61-60.16 ms) of bilateral PD rats than in control and unilateral PD rats. Histological evidence exhibited a progressive dopaminergic neurons (DA) depletion in the substantia nigra (SN) region in 6-OHDA lesioned rats. CONCLUSION: The experimental outcomes strongly implied that significant variations in bladder function and VE decline were due to the depletion of DA neurons in the SN region of the brain.


Assuntos
Doença de Parkinson , Urodinâmica , Ratos , Animais , Oxidopamina , Ratos Sprague-Dawley , Dopamina , Neurônios Dopaminérgicos , Modelos Animais de Doenças
17.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569578

RESUMO

Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Oxidopamina , Doenças Neurodegenerativas/complicações , Qualidade de Vida , Alanina
18.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298708

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by oxidative stress-dependent loss of dopaminergic neurons in the substantia nigra and elevated microglial inflammatory responses. Recent studies show that cell loss also occurs in the hypothalamus in PD. However, effective treatments for the disorder are lacking. Thioredoxin is the major protein disulfide reductase in vivo. We previously synthesized an albumin-thioredoxin fusion protein (Alb-Trx), which has a longer plasma half-life than thioredoxin, and reported its effectiveness in the treatment of respiratory and renal diseases. Moreover, we reported that the fusion protein inhibits trace metal-dependent cell death in cerebrovascular dementia. Here, we investigated the effectiveness of Alb-Trx against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. Alb-Trx significantly inhibited 6-OHDA-induced neuronal cell death and the integrated stress response. Alb-Trx also markedly inhibited 6-OHDA-induced reactive oxygen species (ROS) production, at a concentration similar to that inhibiting cell death. Exposure to 6-OHDA perturbed the mitogen-activated protein kinase pathway, with increased phosphorylated Jun N-terminal kinase and decreased phosphorylated extracellular signal-regulated kinase levels. Alb-Trx pretreatment ameliorated these changes. Furthermore, Alb-Trx suppressed 6-OHDA-induced neuroinflammatory responses by inhibiting NF-κB activation. These findings suggest that Alb-Trx reduces neuronal cell death and neuroinflammatory responses by ameliorating ROS-mediated disruptions in intracellular signaling pathways. Thus, Alb-Trx may have potential as a novel therapeutic agent for PD.


Assuntos
Estresse Oxidativo , Doença de Parkinson , Albuminas/metabolismo , Fatores Imunológicos/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Animais , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
19.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762607

RESUMO

Using a model of Parkinson's disease (PD) induced by the bilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA) into rat brain substantia nigra (SN), we showed uridine to exert a protective effect associated with activation of the mitochondrial ATP-dependent potassium (mitoK-ATP) channel. Injection of 4 µg neurotoxin evoked a 70% decrease in the time the experimental animal spent on the rod in the RotaRod test, an increase in the amount of lipid peroxides in blood serum and cerebral-cortex mitochondria and the rate of reactive oxygen species formation, and a decrease in Ca2+ retention in mitochondria. Herewith, lymphocytes featured an increase in the activity of lactate dehydrogenase, a cytosolic enzyme of glycolysis, without changes in succinate-dehydrogenase activity. Structural changes occurring in the SN and striatum manifested themselves in the destruction of mitochondria, degeneration of neurons and synapses, and stratification of myelin sheaths in them. Subcutaneous injections of 30 µg/kg uridine for 22 days restored the neurotoxin-induced changes in these parameters to levels close to the control. 5-Hydroxydecanoate (5 mg/kg), a specific mitoK-ATP channel inhibitor, eliminated the beneficial effect of uridine for almost all characteristics tested, indicating the involvement of the mitoK-ATP channel in the protective effect of uridine. The mechanism of the protective effect of uridine and its therapeutic applications for the prevention and treatment of PD are discussed.


Assuntos
Neurotoxinas , Doença de Parkinson , Animais , Ratos , Oxidopamina , Uridina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Encéfalo , Trifosfato de Adenosina
20.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069238

RESUMO

Deep-brain subthalamic nucleus stimulation (DBS-STN) has become a well-established therapeutic option for advanced Parkinson's disease (PD). While the motor benefits of DBS-STN are widely acknowledged, the neuropsychiatric effects are still being investigated. Beyond its immediate effects on neuronal circuits, emerging research suggests that DBS-STN might also modulate the peripheral inflammation and neuroinflammation. In this work, we assessed the effects of DBS-STN on food-related motivation, food intake pattern, and the level of anxiety and compared them with markers of cellular and immune activation in nigrostriatal and mesolimbic areas in rats with the 6-OHDA model of early PD. To evaluate the potential mechanism of observed effects, we also measured corticosterone concentration in plasma and leukocyte distribution in peripheral blood. We found that DBS-STN applied during neurodegeneration has beneficial effects on food intake pattern and motivation and reduces anxiety. These behavioral effects occur with reduced percentages of IL-6-labeled cells in the ventral tegmental area and substantia nigra pars compacta in the stimulated brain hemisphere. At the same brain structures, the cFos cell activations were confirmed. Simultaneously, the corticosterone plasma concentration was elevated, and the peripheral blood lymphocytes were reduced after DBS-STN. We believe that comprehending the relationship between the effects of DBS-STN on inflammation and its therapeutic results is essential for optimizing DBS therapy in PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Ratos , Animais , Doença de Parkinson/terapia , Motivação , Doenças Neuroinflamatórias , Corticosterona , Ratos Sprague-Dawley , Estimulação Encefálica Profunda/métodos , Encéfalo , Ansiedade/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa