Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 179(1): 251-267.e24, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539496

RESUMO

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.


Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Loci Gênicos/genética , Glioma/genética , Mutagênese Insercional/métodos , Transgenes/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Recombinases/metabolismo , Transfecção
2.
Anim Biotechnol ; 34(9): 4730-4735, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36905152

RESUMO

Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The AAVS1 locus is a well-known safe harbor for human and mouse studies. In this study, we found an AAVS1-like sequence (pAAVS1) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the pAAVS1. The efficiency of CRISPR/Cas9 in porcine cells was superior to that of TALEN. We added a loxP-lox2272 sequences to the pAAVS1 targeting donor vector containing GFP for further exchange of various transgenes via recombinase-mediated cassette exchange (RMCE). The donor vector and CRISPR/Cas9 components were transfected into porcine fibroblasts. Targeted cells of CRISPR/Cas9-mediated homologous recombination were identified by antibiotic selection. Gene knock-in was confirmed by PCR. To induce RMCE, another donor vector containing the loxP-lox2272 and inducible Cre recombinase was cloned. The Cre-donor vector was transfected into the pAAVS1 targeted cell line, and RMCE was induced by adding doxycycline to the culture medium. RMCE in porcine fibroblasts was confirmed using PCR. In conclusion, gene targeting at the pAAVS1 and RMCE in porcine fibroblasts was successful. This technology will be useful for future porcine transgenesis studies and the generation of stable transgenic pigs.


Assuntos
Sistemas CRISPR-Cas , Recombinases , Animais , Suínos/genética , Humanos , Camundongos , Recombinases/genética , Recombinases/metabolismo , Sistemas CRISPR-Cas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Animais Geneticamente Modificados/metabolismo , Marcação de Genes
3.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458632

RESUMO

Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC-OCT4-EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC-AAVS1-EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC-AAVS1-EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Edição de Genes/métodos , Genes Reporter , Proteínas de Fluorescência Verde , Humanos
4.
J Gene Med ; 22(4): e3157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901177

RESUMO

BACKGROUND: Use of chimeric antigen receptor (CAR) T cells has become a promising strategy in cancer immunotherapy. However, safety in clinical application is also one of the most controversial issues. METHODS: In the present study, we investigated the application of a non-viral site-directed vector (CELiD [closed-ended linear duplex DNA]) dependent on adeno-associated virus (AAV) genomes for the purpose of safe CAR-T engineering. We co-electroporated CD19-CAR encoding "CELiD" vectors with plasmid pCMV-Rep into human T cells and ensured stably transfected CAR-T cells by G418 selection. The efficiency of AAVS1 site-specific integration was analyzed by a real-time polymerase chain reaction. RESULTS: CAR-T cells engineered by CELiD vectors could be established within 20 days with up to 22.8% AAVS1 site-specific integration efficiency. CAR expression and cytokine secretion of CAR modified T cells were evaluated in vitro. Abundant effector cytokines were produced by the CAR-T cells engineered by CELiD vectors compared to control T cells and the killing efficiency of target cells was estimated to as high as 75% in vitro. CONCLUSIONS: With the help of the AAV-derived CELiD vector, CAR genes were preferentially integrated into the AAVS1 site. This technology could be utilized in human T cell modification and remove the safety constraints of CAR-T therapy.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Transdução Genética , Transgenes , Integração Viral , Antígenos CD19/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Citotoxicidade Imunológica , Expressão Gênica , Ordem dos Genes , Engenharia Genética , Humanos , Imunofenotipagem , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
5.
Mol Ther ; 27(12): 2195-2212, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31494053

RESUMO

Our goal is the development of in vivo hematopoietic stem cell (HSC) transduction technology with targeted integration. To achieve this, we modified helper-dependent HDAd5/35++ vectors to express a CRISPR/Cas9 specific to the "safe harbor" adeno-associated virus integration site 1 (AAVS1) locus and to provide a donor template for targeted integration through homology-dependent repair. We tested the HDAd-CRISPR + HDAd-donor vector system in AAVS1 transgenic mice using a standard ex vivo HSC gene therapy approach as well as a new in vivo HSC transduction approach that involves HSC mobilization and intravenous HDAd5/35++ injections. In both settings, the majority of treated mice had transgenes (GFP or human γ-globin) integrated into the AAVS1 locus. On average, >60% of peripheral blood cells expressed the transgene after in vivo selection with low-dose O6BG/bis-chloroethylnitrosourea (BCNU). Ex vivo and in vivo HSC transduction and selection studies with HDAd-CRISPR + HDAd-globin-donor resulted in stable γ-globin expression at levels that were significantly higher (>20% γ-globin of adult mouse globin) than those achieved in previous studies with a SB100x-transposase-based HDAd5/35++ system that mediates random integration. The ability to achieve therapeutically relevant transgene expression levels after in vivo HSC transduction and selection and targeted integration make our HDAd5/35++-based vector system a new tool in HSC gene therapy.


Assuntos
Adenoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Transdução Genética , Transgenes/fisiologia , Integração Viral , Animais , Sistemas CRISPR-Cas , Feminino , Genes Reporter , Terapia Genética , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , gama-Globinas/antagonistas & inibidores , gama-Globinas/genética
6.
Biochem Biophys Res Commun ; 517(4): 677-683, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402115

RESUMO

Primary hyperoxaluria type 1 (PH1) is an inherited metabolic disorder caused by a deficiency of the peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which leads to overproduction of oxalate by the liver and results in urolithiasis, nephrocalcinosis and renal failure. The only curative treatment for PH1 is combined liver and kidney transplantation, which is limited by the lack of suitable organs, significant complications, and the life-long requirement for immunosuppressive agents to maintain organ tolerance. Hepatocyte-like cells (HLCs) generated from CRISPR/Cas9 genome-edited human-induced pluripotent stem cells would offer an attractive unlimited source of autologous gene-corrected liver cells as an alternative to orthotopic liver transplantation (OLT). Here we report the CRISPR/Cas9 nuclease-mediated gene targeting of a single-copy AGXT therapeutic minigene into the safe harbour AAVS1 locus in PH1-induced pluripotent stem cells (PH1-iPSCs) without off-target inserts. We obtained a robust expression of a codon-optimized AGT in HLCs derived from AAVS1 locus-edited PH1-iPSCs. Our study provides the proof of concept that CRISPR/Cas9-mediated integration of an AGXT minigene into the AAVS1 safe harbour locus in patient-specific iPSCs is an efficient strategy to generate functionally corrected hepatocytes, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of PH1.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Terapia Genética , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Animais , Sequência de Bases , Loci Gênicos , Vetores Genéticos/metabolismo , Hepatócitos/citologia , Humanos , Camundongos
7.
Mol Ther ; 25(1): 44-53, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129126

RESUMO

Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies.


Assuntos
Diferenciação Celular , Edição de Genes , Expressão Gênica , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transgenes , Animais , Biomarcadores , Sistemas CRISPR-Cas , Reprogramação Celular , Marcação de Genes , Loci Gênicos , Camadas Germinativas/embriologia , Macaca mulatta , Especificidade de Órgãos/genética
8.
Methods ; 101: 43-55, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707206

RESUMO

The potential use of induced pluripotent stem cells (iPSCs) in personalized regenerative medicine applications may be augmented by transgenics, including the expression of constitutive cell labels, differentiation reporters, or modulators of disease phenotypes. Thus, there is precedence for reproducible transgene expression amongst iPSC sub-clones with isogenic or diverse genetic backgrounds. Using virus or transposon vectors, transgene integration sites and copy numbers are difficult to control, and nearly impossible to reproduce across multiple cell lines. Moreover, randomly integrated transgenes are often subject to pleiotropic position effects as a consequence of epigenetic changes inherent in differentiation, undermining applications in iPSCs. To address this, we have adapted popular TALEN and CRISPR/Cas9 nuclease technologies in order to introduce transgenes into pre-defined loci and overcome random position effects. AAVS1 is an exemplary locus within the PPP1R12C gene that permits robust expression of CAG promoter-driven transgenes. Gene targeting controls transgene copy number such that reporter expression patterns are reproducible and scalable by ∼2-fold. Furthermore, gene expression is maintained during long-term human iPSC culture and in vitro differentiation along multiple lineages. Here, we outline our AAVS1 targeting protocol using standardized donor vectors and construction methods, as well as provide practical considerations for iPSC culture, drug selection, and genotyping.


Assuntos
Cromossomos Humanos Par 19/genética , Engenharia Genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Sequência de Bases , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Clonagem Molecular , Dependovirus , Genes Reporter , Loci Gênicos , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Parvovirinae/genética , Regiões Promotoras Genéticas , Transfecção , Transgenes
9.
Biotechnol Lett ; 39(10): 1471-1476, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28721587

RESUMO

OBJECTIVES: To establish genetically modified cell lines that can produce functional α1-antitrypsin (AAT), by CRISPR/Cas9-assisted homologous recombination. RESULTS: α1-Antitrypsin deficiency (AATD) is a monogenic heritable disease that often results in lungs and liver damage. Current augmentation therapy is expensive and in short of supply. To develop a safer and more effective therapeutic strategy for AATD, we integrated the AAT gene (SERPINA1, NG_008290.1) into the AAVS1 locus of human cell line HEK293T and assessed the safety and efficacy of CRISPR/Cas9 on producing potential therapeutic cell lines. Cell clones obtained had the AAT gene integrated at the AAVS1 locus and secreted approx. 0.04 g/l recombinant AAT into the medium. Moreover, the secreted AAT showed an inhibitory activity that is comparable to plasma AAT. CONCLUSIONS: CRISPR/Cas9-mediated engineering of human cells is a promising alternative for generating isogenic cell lines with consistent AAT production. This work sheds new light on the generation of therapeutic liver stem cells for AATD.


Assuntos
Engenharia Genética/métodos , Células HEK293/citologia , alfa 1-Antitripsina/genética , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Dosagem de Genes , Células HEK293/metabolismo , Humanos , Transfecção , alfa 1-Antitripsina/metabolismo
10.
Biotechnol Lett ; 38(9): 1423-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27271519

RESUMO

OBJECTIVES: To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. RESULTS: AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. CONCLUSIONS: The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Humanos , Células Jurkat , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Transdução Genética
11.
Biochem Biophys Res Commun ; 437(1): 74-8, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23791874

RESUMO

Thrombolytic therapy using tissue plasminogen activator (TPA) is an effective method for treating acute myocardial infarction. However, the systemic administration of TPA is associated with the risk of hemorrhage. Mesenchymal stem cells (MSCs) from bone marrow are characterized by low immunogenicity and homing toward damaged tissues and are therefore ideal cell carriers to achieve lesion-targeting medication. In this article, TPA gene was integrated into the AAVS1 of mesenchymal stem cells, which has been confirmed to be a safe chromosomal locus. The targeting efficiency was 83%. The clones with the site-specific integration retained the stem cell traits of MSCs, displayed a normal karyotype and could persistently and effectively express TPA, as demonstrated by an average expression activity of 1.5 units/mL (3.4-fold that of the control group). After subculture and subsequent growth for two weeks, the clones showed an average TPA activity of 1.43 units/mL and exhibited no significant differences among the individual clones. In summary, the foreign TPA gene can be specifically introduced to the AAVS1 locus, whereby it can be stably and effectively expressed. MSCs can serve as cell carriers for the targeted treatment of a thrombus using TPA.


Assuntos
Expressão Gênica , Marcação de Genes , Loci Gênicos/genética , Células-Tronco Mesenquimais/metabolismo , Ativador de Plasminogênio Tecidual/genética , Células Clonais , Vetores Genéticos/genética , Humanos
12.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4098-4107, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877393

RESUMO

Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Sirolimo/farmacologia , Sirolimo/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Puromicina/metabolismo
13.
Curr Protoc ; 3(1): e635, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36598341

RESUMO

Double-control quantitative copy number PCR (dc-qcnPCR) is a recently described tool that can be used to quantify donor DNA insertions in genetically modified monoclonal cell lines. In conjunction with an insert-confirmation PCR, the technique can quickly and easily identify clones containing on-target heterozygous or homozygous donor DNA integrations and exclude off-target insertions. The genetic manipulation of immortal cell lines is a versatile tool to elucidate cellular signaling pathways and protein functions. Despite recent advances in the precision of genetic engineering tools such as CRISPR/Cas9, transcription-activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs), it is still essential to verify the accurate insertion of the sequence of interest (donor DNA) into the targeted genomic DNA (gDNA) locus. This precise integration into a genetic safe harbor, and exclusion of the donor DNA from functionally relevant genes, can ensure normal cellular functionality. Current methods to analyze the specificity of donor DNA insertions either are cost-prohibitive or create dependency on manufacturers for assay design and production. The dc-qcnPCR method is a simple, yet powerful, approach that can be prepared and carried out in any laboratory equipped with standard molecular biology supplies. Here we provide step-by-step instructions to prepare and perform the dc-qcnPCR, and its companion insert-confirmation PCR, to determine donor DNA insertion numbers in monoclonal cell lines genetically modified through CRISPR/Cas9. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genetic modification at AAVS1 safe harbor in induced pluripotent stem cells (IMR90-4) using CRISPR/Cas9: from plasmid design to monoclonal expansion Support Protocol 1: Measurement of Gaussia luciferase activity to verify reporter protein functionality Support Protocol 2: Verification of monoclonal expansion using immunofluorescence. Basic Protocol 2: Insert-confirmation PCR Basic Protocol 3: Design and preparation of double-control quantitative copy number PCR reagents and quantification of donor DNA integrations in genetically modified monoclonal cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Variações do Número de Cópias de DNA , Animais Geneticamente Modificados , Reação em Cadeia da Polimerase
14.
Mol Ther Methods Clin Dev ; 31: 101151, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027068

RESUMO

Hepatitis C virus (HCV) infections frequently recur after liver transplantation in patients with HCV-related liver diseases. Approximately 30% of these patients progress to cirrhosis within 5 years after surgery. In this study, we proposed an effective therapeutic strategy to overcome the recurrence of HCV. CRISPR-Cas9 was used to insert an expression cassette encoding an RNA aptamer targeting HCV NS5B replicase as an anti-HCV agent into adeno-associated virus integration site 1 (AAVS1), known as a "safe harbor," in a hepatocellular carcinoma cell line to confer resistance to HCV. The RNA aptamer expression system based on a dihydrofolate reductase minigene was precisely knocked in into AAVS1, leading to the stable expression of aptamer RNA in the developed cell line. HCV replication was effectively inhibited at both the RNA and protein levels in cells transfected with HCV RNA or infected with HCV. RNA immunoprecipitation and competition experiments strongly suggested that this HCV inhibition was due to the RNA aptamer-mediated sequestration of HCV NS5B. No off-target insertion of the RNA aptamer expression construct was observed. The findings suggest that HCV-resistant liver cells produced by genome editing technology could be used as a new alternative in the development of a treatment for HCV-induced liver diseases.

15.
Methods Mol Biol ; 2495: 99-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696030

RESUMO

CRISPR/Cas9 system is a powerful genome-editing technology for studying genetics and cell biology. Safe harbor sites are ideal genomic locations for transgene integration with minimal interference in cellular functions. Gene targeting of the AAVS1 locus enables stable transgene expression without phenotypic effects in host cells. Here, we describe the strategy for targeting the AAVS1 site with an inducible Neurogenin-2 (Ngn2) donor template by CRISPR/Cas9 in hiPSCs, which facilitates generation of an inducible cell line that can rapidly and homogenously differentiate into excitatory neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transgenes
16.
Bioimpacts ; 12(3): 219-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677672

RESUMO

Introduction: Migration of fibroblast cells in wound areas is a critical aspect of the wound healing process. Employment of enhanced green fluorescent protein (EGFP) labeled fibroblast cells facilitates real-time monitoring and functional evaluation of these cells in both in vitro and in vivo settings. Plasma rich in growth factor (PRGF) is a potent accelerator of wound healing; therefore, in this study, a novel method to fabricate an electrospun bioactive scaffold containing PRGF was employed to induce in vitro cell proliferation and migration. Methods: First, the EGFP reporter gene was integrated into the AAVS1 locus of fibroblast cells using CRISPR/Cas9 system. Then, PRGF was obtained from platelet-rich plasma, and a multi-layered scaffold was fabricated using polyurethane-cellulose acetate (PU-CA) fibers as the outer layers and PRGF-containing gelatin fibers were located in the internal layer like a central strip. Scanning electron microscopy (SEM), tensile, water contact angle, and FTIR tests were performed to assess the characteristics of the scaffolds. The EGFP targeted cells were cultured on scaffolds with or without PRGF to investigate their viability, toxicity, and migration pattern in response to the release profile. Results: Fluorescence images showed that the number of migrating cells on scaffold containing PRGF was more significant than PU-CA scaffold up to day 6. Increased expression of SGPL1, DDR2, and VEGF genes was also observed on the scaffold containing PRGF compared to PU-CA using real-time polymerase chain reaction (PCR) analysis with around 3-, 2-, and 2-fold enhancement, respectively. Conclusion: The current scaffold provides the appropriate template for cell attachment and migration. In addition, the present results highlight the potential of reporter gene targeting for the in vitro analysis of biological processes such as migration.

17.
Methods Mol Biol ; 2454: 755-773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33830454

RESUMO

Induced pluripotent stem cells (iPSCs) generated from patients are a valuable tool for disease modelling, drug screening, and studying the functions of cell/tissue-specific genes. However, for this research, isogenic iPSC lines are important for comparison of phenotypes in the wild type and mutant differentiated cells generated from the iPSCs. The advent of gene editing technologies to correct or generate mutations helps in the generation of isogenic iPSC lines with the same genetic background. Due to the ease of programming, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9-based gene editing tools have gained pace in gene manipulation studies, including investigating complex diseases like cancer. An iPSC line with drug inducible Cas9 expression from the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus offers a controllable expression of Cas9 with robust gene editing. Here, we describe a stepwise protocol for the generation and characterization of such an iPSC line (AAVS1-PDi-Cas9 iPSC) with a doxycycline (dox)-inducible Cas9 expression cassette from the AAVS1 safe harbor site and efficient editing of target genes with lentiviral vectors expressing gRNAs. This approach with a tunable Cas9 expression that allows investigating gene functions in iPSCs or in the differentiated cells can serve as a versatile tool in disease modelling studies.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Doxiciclina/farmacologia , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
18.
Methods Mol Biol ; 2549: 379-398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34505269

RESUMO

Genetically encoded fluorescent biosensors (GEFBs) enable researchers to visualize and quantify cellular processes in live cells. Induced pluripotent stem cells (iPSCs) can be genetically engineered to express GEFBs via integration into the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus. This can be achieved using CRISPR/Cas ribonucleoprotein targeting to cause a double-strand break at the AAVS1 locus, which subsequently undergoes homology-directed repair (HDR) in the presence of a donor plasmid containing the GEFB sequence. We describe an optimized protocol for CRISPR/Cas-mediated knock-in of GEFBs into the AAVS1 locus of human iPSCs that allows puromycin selection and which exhibits negligible off-target editing. The resulting iPSC lines can be differentiated into cells of different lineages while retaining expression of the GEFB, enabling live-cell interrogation of cell pathway activities across a diversity of disease models.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
19.
Front Cell Dev Biol ; 10: 1038867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274846

RESUMO

Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.

20.
Mol Ther Methods Clin Dev ; 26: 107-118, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795775

RESUMO

Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa