Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(46): e1904387, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31592578

RESUMO

All-inorganic perovskite solar cells have developed rapidly in the last two years due to their excellent thermal and light stability. However, low efficiency and moisture instability limit their future commercial application. The mixed-halide inorganic CsPbI2 Br perovskite with a suitable bandgap offers a good balance between phase stability and light harvesting. However, high defect density and low carrier lifetime in CsPbI2 Br perovskites limit the open-circuit voltage (Voc < 1.2 V), short-circuit current density (Jsc < 15 mA cm-2 ), and fill factor (FF < 75%) of CsPbI2 Br perovskite solar cells, resulting in an efficiency below 14%. For the first time, a CsPbI2 Br perovskite is doped by Eu(Ac)3 to obtain a high-quality inorganic perovskite film with a low defect density and long carrier lifetime. A high efficiency of 15.25% (average efficiency of 14.88%), a respectable Voc of 1.25 V, a reasonable Jsc of 15.44 mA cm-2 , and a high FF of 79.00% are realized for CsPbI2 Br solar cells. Moreover, the CsPbI2 Br solar cells with Eu(Ac)3 doping demonstrate excellent air stability and maintain more than 80% of their initial power conversion efficiency (PCE) values after aging in air (relative humidity: 35-40%) for 30 days.

2.
Pharmacol Res ; 137: 114-121, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291873

RESUMO

Primary cilia are tiny microtubule-based signaling devices that regulate a variety of physiological functions, including metabolism and cell division. Defects in primary cilia lead to a myriad of diseases in humans such as obesity and cancers. In the mature brain, both neurons and astrocytes contain a single primary cilium. Although neuronal primary cilia are not directly involved in synaptic communication, their pathophysiological impacts on obesity and mental disorders are well recognized. In contrast, research on astrocytic primary cilia lags far behind. Currently, little is known about their functions and molecular pathways in the mature brain. Unlike neurons, postnatal astrocytes retain the capacity of cell division and can become reactive and proliferate in response to various brain insults such as epilepsy, ischemia, traumatic brain injury, and neurodegenerative ß-amyloid plaques. Since primary cilia derive from the mother centrioles, astrocyte proliferation must occur in coordination with the dismantling and ciliogenesis of astrocyte cilia. In this regard, the functions, signal pathways, and structural dynamics of neuronal and astrocytic primary cilia are fundamentally different. Here we discuss and compare the current understanding of neuronal and astrocytic primary cilia.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Cílios/fisiologia , Neurônios/fisiologia , Fatores de Ribosilação do ADP/fisiologia , Anormalidades Múltiplas/fisiopatologia , Adenilil Ciclases/fisiologia , Animais , Humanos , Transtornos Mentais/fisiopatologia , Obesidade/fisiopatologia
3.
Addict Biol ; 19(5): 770-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23461397

RESUMO

Ethanol exposure and withdrawal alter the generation of new neurons in the adult hippocampus. The endogenous opioid system, particularly the µ-opioid receptor (MOR), can modulate neural progenitors and also plays a critical role in ethanol drinking and dependence. In the present study, we sought to determine whether MOR contributes to the effects of ethanol on the dentate gyrus (DG) neurogenic niche. MOR wild-type (WT), heterozygous (Het) and knockout (KO) littermates were subjected to voluntary ethanol drinking in repeated limited-access two-bottle choice (2BC) sessions. MOR deficiency did not alter progenitor proliferation, neuronal differentiation and maturation, apoptosis or microglia in ethanol-naïve mice. When exposed to five consecutive weeks of 2BC, MOR mutant mice exhibited a gene-dosage-dependent reduction of ethanol consumption compared with WT mice. Introducing a week of ethanol deprivation between each week of 2BC increased ethanol consumption in all genotypes and produced equivalent intakes in WT, Het and KO mice. Under the latter paradigm, ethanol drinking decreased progenitor proliferation and neuronal differentiation in the DG of WT mice. Interestingly, WT mice exhibited a strong negative correlation between ethanol intake and proliferation, which was disrupted in Het and KO mice. Moreover, MOR deficiency blocked the effect of ethanol on neuronal differentiation. MOR deficiency also protected against the neuroimmune response to ethanol drinking. Finally, chronic binge drinking induced a paradoxical decrease in apoptosis, which was independent of MOR. Altogether, our data suggest that MOR is implicated in some of the neuroplastic changes produced by chronic ethanol exposure in the DG.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Hipocampo/efeitos dos fármacos , Receptores Opioides mu/fisiologia , Análise de Variância , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Duplacortina , Hipocampo/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores Opioides mu/deficiência , Autoadministração , Transdução de Sinais/efeitos dos fármacos
4.
Neurochem Int ; 174: 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290616

RESUMO

It is widely acknowledged that epilepsy is a neurological disorder characterized by recurrent and atypical neuronal discharges, resulting in transient dysfunction within the brain. The protective role of hydrogen sulfide (H2S) in epilepsy has been elucidated by recent studies, but the underlying mechanisms remain poorly understood. To investigate this, the concentration of H2S was measured by spectrophotometry and a fluorescent probe in LiCl/Pilocarpine (LiCl/Pilo)-induced seizures in rats. The localization of proteins was examined using immunofluorescence. Electroencephalogram and behavioral tests were employed to evaluate the occurrence of seizures. Neuropathological changes in the hippocampus were examined by hematoxylin-eosin staining, Nissl staining, and transmission electron microscopy. Through proteomics and bioinformatics analysis, we identified the differential proteins in the hippocampus of rats following H2S intervention. Protein changes were detected through western blotting. The results showed that H2S treatment significantly alleviated seizures and minimized post-seizures neurological damage in rats. Proteomics analysis revealed adenylate cyclase 3 (AC3) as a protein potentially targeted by H2S. Moreover, the AC3 activator forskolin reversed the downregulation effect of H2S on the AC3/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/transient receptor potential vanilloid 2 (TRPV2) signaling pathway. In conclusion, H2S targets and downregulates the expression of AC3, thereby modulating the AC3/cAMP/PKA signaling pathway to regulate the expression of TRPV2 in LiCl/Pilo-induced seizures, ultimately leading to seizure inhibition and neuroprotection.


Assuntos
Adenilil Ciclases , Epilepsia , Pilocarpina , Ratos , Animais , Pilocarpina/toxicidade , Neuroproteção , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Convulsões/metabolismo , AMP Cíclico/metabolismo , Epilepsia/induzido quimicamente
5.
Pharmaceutics ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543310

RESUMO

PURPOSE: It is well known that inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) provides cardiac protection in cases of myocardial ischemia-reperfusion injury. However, there are currently no cytoplasm-impermeable drugs that target CaMKII. The aim of this study was to develop curcumin albumin nanoparticles (HSA-CCM NPs) containing AC3-I and investigate their protective effects on hypoxia-reoxygenation (H/R)-induced injuries in adult rat cardiomyocytes and ischemia-reperfusion (I/R) injuries in isolated rat hearts. METHODS: HSA-CCM NPs were synthesized using ß-ME methods, while the membrane-impermeable peptide AC3-I was covalently linked via a disulfide bond to synthesize AC3-I@HSA-CCM NPs (AC3-I@NPs). Nanoparticle stability and drug release were characterized. To assess the cardiomyocyte uptake of AC3-I@NPs, AC3-I@NPs were incubated with cardiomyocytes under normoxia and hypoxia, respectively. The cardioprotective effect of AC3-I@NPs was determined by using a lactate dehydrogenase kit (LDH) and PI/Hoechst staining. The phosphorylation of phospholamban (p-PLB) was detected by Western blotting in hypoxia-reoxygenation and electric field stimulation models. To further investigate the protective role of AC3-I@NPs against myocardial ischemia-reperfusion injury, we collected coronary effluents and measured creatine kinase (CK) and LDH release in Langendorff rat hearts. RESULTS: AC3-I@NPs were successfully prepared and characterized. Both HSA-CCM NPs and AC3-I@NPs were taken up by cardiomyocytes. AC3-I@NPs protected cardiomyocytes from injury caused by hypoxia-reoxygenation, as demonstrated by decreased cardiomyocyte death and LDH release. AC3-I@NPs reduced p-PLB levels evoked by hypoxia-reoxygenation and electrical field stimulation in adult rat cardiac myocytes. AC3-I@NPs decreased the release of LDH and CK from coronary effluents. CONCLUSIONS: AC3-I@NPs showed protective effects against myocardial injuries induced by hypoxia-reoxygenation in cardiomyocytes and ischemia-reperfusion in isolated hearts.

6.
Cytokine ; 64(1): 30-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23867612

RESUMO

Interleukin-10 (IL-10) is an important immunomodulatory cytokine that plays an obligate role in regulating inflammatory responses. Here we demonstrated the role of IL-10 in regulating crypts length and breadth as well as maintaining the survival of epithelial cells using rhesus colon explant cultures. Anti-IL-10 antibody treatment of colon explant cultures induced increased production of inflammatory cytokines/molecules like IFNγ, TNFα, CD107a and perforin as well as increased epithelial cell apoptosis compared to media controls tested. Our results suggest that IL-10 plays a crucial role in maintaining mucosal homeostasis by regulating mucosal IFNγ and TNFα cytokine production.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Colo/metabolismo , Feminino , Interferon gama/biossíntese , Interleucina-10/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/biossíntese , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Macaca mulatta , Masculino , Técnicas de Cultura de Órgãos , Perforina/biossíntese , Perforina/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Fator de Necrose Tumoral alfa/biossíntese
7.
Methods Cell Biol ; 175: 17-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967140

RESUMO

Primary cilia provide a specialized subcellular environment favoring ordered and timely interaction and modification of signaling molecules, necessary for the sensing and transduction of extracellular signals and environmental conditions. Crucial to the understanding of ciliary function is the knowledge of the signaling molecules composing the ciliary compartment. While proteomes of primary cilia have been published recently, the selective isolation of primary cilia from specific cell types and whole tissue still proves difficult, and many laboratories instead resort to the analysis of cultured cells, which may introduce experimental artifacts. Here we present a flow cytometry-based method to isolate and characterize primary cilia from the murine ventricular-subventricular zone. After deciliation, primary cilia are immunolabeled with antibodies against ciliary markers. As an example, we here use a double-staining with acetylated tubulin, which stains the ciliary axoneme, and ciliary membrane protein ADP-ribosylation-like factor 13b (Arl13b); additionally, we triple-labeled primary cilia using the ciliary marker adenylate cyclase 3 (AC3). Besides analysis at the single particle level, fluorescence activated cell sorting (FACS) allows collection of pure preparations of primary cilia suited for subsequent proteomic analyses like mass spectrometry or western blot. As an example of analytical application, we performed triple immunostaining and FACS analysis to reveal cilia heterogeneity. Thus, our cilia isolation method, which can readily be applied to other tissues or cell culture, will facilitate the study of this key cellular organelle and shed light on its role in normal conditions and disease.


Assuntos
Cílios , Proteômica , Animais , Camundongos , Cílios/metabolismo , Citometria de Fluxo , Tubulina (Proteína)/metabolismo , Transporte Proteico
8.
Microbiol Spectr ; : e0432322, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847500

RESUMO

Obesity, defined as a disorder of lipid metabolism caused by white fat accumulation, is closely related to the gut microbiota. Akkermansia muciniphila (Akk), one of the most common gut commensals, can reduce fat storage and promote the browning of white adipocytes, alleviating disorders of lipid metabolism. However, which components of Akk produce the effect remain unclear, limiting the application of Akk in the treatment of obesity. Here, we found that the membrane protein Amuc_1100 of Akk decreased formation of lipid droplets and fat accumulation during the differentiation process and stimulated browning in vivo and in vitro. Transcriptomics revealed that Amuc_1100 accelerated lipolysis through upregulation of the AC3/PKA/HSL pathway in 3T3-L1 preadipocytes. Quantitative PCR (qPCR) and Western blotting showed that Amuc_1100 intervention promotes steatolysis and browning of preadipocytes by increasing lipolysis-related genes (AC3/PKA/HSL) and brown adipocyte marker genes (PPARγ, UCP1, and PGC1α) at both the mRNA and protein levels. These findings introduce new insight into the effects of beneficial bacteria and provide new avenues for the treatment of obesity. IMPORTANCE An important intestinal bacterial strain Akkermansia muciniphila contributes to improving carbohydrate and lipid metabolism, thus alleviating obesity symptoms. Here, we find that the Akk membrane protein Amuc_1100 regulates lipid metabolism in 3T3-L1 preadipocytes. Amuc_1100 inhibits lipid adipogenesis and accumulation during the differentiation process of preadipocytes, upregulates the browning-related genes of preadipocytes, and promotes thermogenesis through activation of uncoupling protein-1 (UCP-1), including Acox1 involved in lipid oxidation. Amuc_1100 accelerates lipolysis via the AC3/PKA/HSL pathway, phosphorylating HSL at Ser 660. The experiments illustrated here identify the specific molecules and functional mechanisms of Akk. Therapeutic approaches with Amuc_1100 derived from Akk may help alleviate obesity and metabolic disorders.

9.
Phage (New Rochelle) ; 3(3): 165-170, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199530

RESUMO

Host range analyses and genome sequencing/annotation of bacteriophage isolates allow more effective development of tools for applications in medicine, agriculture, and the environment and expand our understanding of phage biology. Here we present the complete sequence of phage Ac3's assembled and annotated genome (accession OK040907). Originally referred to simply as "3," Ac3 has previously been described as a T4-like bacteriophage belonging to the Myoviridae family in the Caudovirales order of tailed bacteriophages. Using a combination of spot tests and full plate plaque assays, Ac3's permissive and adsorptive host range were evaluated against the ECOR Reference Library; a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli. Spot assays revealed that Ac3 could adsorb to 43 of the 72 strains (59.7%), whereas plaque assays demonstrated Ac3's ability to complete replication within 27 of the 72 strains (37.5%). By overlaying spot test and plaque assay results, 16 of the 45 nonpermissive ECOR strains (35.5%) were highlighted as being able to support Ac3's adsorption and tail contraction, but not its replication. Further characterization of Ac3 is still needed, however, the study presented here provides a solid starting point for future research.

10.
J Comp Neurol ; 530(12): 2176-2187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35434813

RESUMO

Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.


Assuntos
Glaucoma , Degeneração Retiniana , Animais , Biomarcadores/metabolismo , Cegueira , Cílios , Glaucoma/metabolismo , Camundongos , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/metabolismo
11.
Mol Brain ; 13(1): 28, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122360

RESUMO

Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.


Assuntos
Astrócitos/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Centrossomo/metabolismo , Giro Denteado/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Convulsões/metabolismo
12.
Mol Neurobiol ; 57(7): 3042-3056, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32458389

RESUMO

Acids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here, we show that while the MOE of AC3 knockout (KO) mice failed to respond to an odor mix in electro-olfactogram (EOG) recordings, it retained a small fraction of acid-evoked EOG responses. The acetic acid-induced EOG responses in wild-type (WT) MOE can be dissected into two components: the big component dependent on the AC3-mediated cAMP pathway and the much smaller component not. The small acid-evoked EOG response of the AC3 KOs was blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX that desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Real-time polymerase chain reaction further detected the mRNA expression of ASIC1a, ASIC2b, and ASIC3 in the MOE. Additionally, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, likely ASIC-mediated ionotropic mechanism for acid sensing.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Adenilil Ciclases/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Adenilil Ciclases/genética , Animais , AMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Olfato/fisiologia
13.
Front Cell Neurosci ; 13: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814930

RESUMO

Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary cilia throughout the central nervous system (CNS). Genome-wide association studies in humans have associated ADCY3 with major depressive disorder and autistic spectrum disorder, both of which exhibit sexual dimorphism. To date, it is unclear how AC3 affects protein phosphorylation and signal networks in central neurons, and what causes the sexual dimorphism of autism. We employed a mass spectrometry (MS)-based phosphoproteomic approach to quantitatively profile differences in phosphorylation between inducible AC3 knockout (KO) and wild type (WT), male and female mice. In total, we identified 4,655 phosphopeptides from 1,756 proteins, among which 565 phosphopeptides from 322 proteins were repetitively detected in all samples. Over 46% phosphopeptides were identified in at least three out of eight biological replicas. Comparison of AC3 KO and WT datasets revealed that phosphopeptides with motifs matching proline-directed kinases' recognition sites had a lower abundance in the KO dataset than in WTs. We detected 14 phosphopeptides restricted to WT dataset (i.e., Rabl6, Spast and Ppp1r14a) and 35 exclusively in KOs (i.e., Sptan1, Arhgap20, Arhgap44, and Pde1b). Moreover, 95 phosphopeptides (out of 90 proteins) were identified only in female dataset and 26 only in males. Label-free MS spectrum quantification using Skyline further identified phosphopeptides that had higher abundance in each sample group. In total, 204 proteins had sex-biased phosphorylation and 167 of them had increased expression in females relative to males. Interestingly, among the 204 gender-biased phosphoproteins, 31% were found to be associated with autism, including Dlg1, Dlgap2, Syn1, Syngap1, Ctnna1, Ctnnd1, Ctnnd2, Pkp4, and Arvcf. Therefore, this study also provides the first phosphoproteomics evidence suggesting that gender-biased post-translational phosphorylation may be implicated in the sexual dimorphism of autism.

14.
Artigo em Inglês | MEDLINE | ID: mdl-27785336

RESUMO

Cilia are rigid, centriole-derived, microtubule-based organelles present in a majority of vertebrate cells including neurons. They are considered the cellular "antennae" attuned for detecting a range of extracellular signals including photons, odorants, morphogens, hormones and mechanical forces. The ciliary microenvironment is distinct from most actin-based subcellular structures such as microvilli or synapses. In the nervous system, there is no evidence that neuronal cilia process any synaptic structure. Apparently, the structural features of neuronal cilia do not allow them to harbor any synaptic connections. Nevertheless, a large number of G protein-coupled receptors (GPCRs) including odorant receptors, rhodopsin, Smoothened, and type 6 serotonin receptor are found in cilia, suggesting that these tiny processes largely depend on metabotropic receptors and their tuned signals to impact neuronal functions. The type 3 adenylyl cyclase (AC3), widely known as a cilia marker, is highly and predominantly expressed in olfactory sensory cilia and primary cilia throughout the brain. We discovered that ablation of AC3 in mice leads to pleiotropic phenotypes including anosmia, failure to detect mechanical stimulation of airflow, cognitive deficit, obesity, and depression-like behaviors. Multiple lines of human genetic evidence also demonstrate that AC3 is associated with obesity, major depressive disorder (MDD), sarcoidosis, and infertility, underscoring its functional importance. Here we review recent progress on AC3, a key enzyme mediating the cAMP signaling in neuronal cilia.

15.
Biol Psychiatry ; 80(11): 836-848, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-26868444

RESUMO

BACKGROUND: Although major depressive disorder (MDD) has low heritability, a genome-wide association study in humans has recently implicated type 3 adenylyl cyclase (AC3; ADCY3) in MDD. Moreover, the expression level of AC3 in blood has been considered as a MDD biomarker in humans. Nevertheless, there is a lack of supporting evidence from animal studies. METHODS: We employed multiple approaches to experimentally evaluate if AC3 is a contributing factor for major depression using mouse models lacking the Adcy3 gene. RESULTS: We found that conventional AC3 knockout (KO) mice exhibited phenotypes associated with MDD in behavioral assays. Electroencephalography/electromyography recordings indicated that AC3 KO mice have altered sleep patterns characterized by increased percentage of rapid eye movement sleep. AC3 KO mice also exhibit neuronal atrophy. Furthermore, synaptic activity at cornu ammonis 3-cornu ammonis 1 synapses was significantly lower in AC3 KO mice, and they also exhibited attenuated long-term potentiation as well as deficits in spatial navigation. To confirm that these defects are not secondary responses to anosmia or developmental defects, we generated a conditional AC3 floxed mouse strain. This enabled us to inactivate AC3 function selectively in the forebrain and to inducibly ablate it in adult mice. Both AC3 forebrain-specific and AC3 inducible knockout mice exhibited prodepression phenotypes without anosmia. CONCLUSIONS: This study demonstrates that loss of AC3 in mice leads to decreased neuronal activity, altered sleep pattern, and depression-like behaviors, providing strong evidence supporting AC3 as a contributing factor for MDD.


Assuntos
Adenilil Ciclases/fisiologia , Comportamento Animal/fisiologia , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/fisiopatologia , Adenilil Ciclases/deficiência , Animais , Modelos Animais de Doenças , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Fenótipo , Transtornos do Sono-Vigília/fisiopatologia , Navegação Espacial/fisiologia
16.
Neurosci Lett ; 591: 86-92, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25668489

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability and developmental delay. In addition to cognitive dysfunction, DS patients are marked by diminished neurogenesis, a neuropathological feature also found in the Ts65Dn mouse model of DS. Interestingly, manipulations that enhance neurogenesis - like environmental enrichment or pharmacological agents - improve cognition in Ts65Dn mice. P7C3 is a proneurogenic compound that enhances hippocampal neurogenesis, cell survival, and promotes cognition in aged animals. However, this compound has not been tested in the Ts65Dn mouse model of DS. We hypothesized that P7C3 treatment would reverse or ameliorate the neurogenic deficits in Ts65Dn mice. To test this, adult Ts65Dn and age-matched wild-type (WT) mice were administered vehicle or P7C3 twice daily for 3 months. After 3 months, brains were examined for indices of neurogenesis, including quantification of Ki67, DCX, activated caspase-3 (AC3), and surviving BrdU-immunoreactive(+) cells in the granule cell layer (GCL) of the hippocampal dentate gyrus. P7C3 had no effect on total Ki67+, DCX+, AC3+, or surviving BrdU+ cells in WT mice relative to vehicle. GCL volume was also not changed. In keeping with our hypothesis, however, P7C3-treated Ts65Dn mice had a significant increase in total Ki67+, DCX+, and surviving BrdU+ cells relative to vehicle. P7C3 treatment also decreased AC3+ cell number but had no effect on total GCL volume in Ts65Dn mice. Our findings show 3 months of P7C3 is sufficient to restore the neurogenic deficits observed in the Ts65Dn mouse model of DS.


Assuntos
Carbazóis/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Carbazóis/uso terapêutico , Proteína Duplacortina , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Feminino , Hipocampo/patologia , Masculino , Camundongos , Neurogênese , Fármacos Neuroprotetores/uso terapêutico
17.
Oncol Lett ; 9(6): 2795-2798, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26137149

RESUMO

The AC3-33 gene encodes a secretory protein that can inhibit Elk1 transcriptional activity via the ERK1/2 pathway. In the current study, in situ RNA hybridization was used to detect the AC3-33 gene expression in multiple organ cancer and cancer-adjacent normal tissue. The results showed that the expression level of AC3-33 varies across different tissues. AC3-33 exhibited positive expression in squamous cell carcinoma of the esophagus, adenocarcinoma of the rectum, hepatocellular carcinoma, squamous cell carcinoma (SCC) of the lung, cancer-adjacent normal hepatic tissue, clear cell carcinoma of the kidney, invasive ductal carcinoma of the breast, SCC of the uterine cervix and cancer-adjacent normal kidney tissue. Negative expression of AC3-33 was observed in adenocarcinoma of the stomach and colon, cancer-adjacent normal esophageal tissue, cancer-adjacent normal gastric tissue, cancer-adjacent normal colon tissue, cancer-adjacent normal rectal tissue, serous adenocarcinoma of the ovary and cancer-adjacent normal ovarian tissue. However, the expression of AC3-33 in cancer adjacent normal breast tissue was partially positive. In conclusion, the AC3-33 gene does exhibit positive expression in certain carcinomas, which may indicate that AC3-33 has a significant involvement in the development and progression of these carcinomas.

18.
Pharmacol Biochem Behav ; 126: 90-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25260424

RESUMO

Methamphetamine addicts demonstrate impaired frontal cortical-dependent cognitive function that could result from methamphetamine-induced maladaptive plasticity in the prefrontal cortex. Reduced adult gliogenesis observed in a rodent model of compulsive methamphetamine self-administration could contribute to the maladaptive plasticity in the medial prefrontal cortex (mPFC) as excessive methamphetamine intake is associated with loss of gliogenesis. The present study explored the vulnerability of mPFC progenitors to the duration of various sessions of methamphetamine self-administration in limited and extended access schedule of reinforcement. Proliferation of progenitors via Ki-67 labeling and apoptosis via activated caspase-3 labeling were studied in rats that intravenously self-administered methamphetamine in a limited access (1h/day: short access (ShA)) or extended access (6h/day: long access (LgA)) paradigm over 4, 13, 22 or 42 sessions, and in rats that experienced 22 sessions and were withdrawn from self-administration for a period of 4weeks. Four sessions of LgA methamphetamine enhanced proliferation and apoptosis and forty-two sessions of ShA and LgA methamphetamine reduced proliferation without effecting apoptosis. Withdrawal from twenty-two sessions of methamphetamine enhanced proliferation in LgA animals. Our findings demonstrate that proliferation of mPFC progenitors is vulnerable to psychostimulant exposure and withdrawal with distinct underlying mechanisms relating to methamphetamine toxicity. The susceptibility of mPFC progenitors to even modest doses of methamphetamine could account for the pronounced neuroadaptation in the mPFC linked to methamphetamine abuse.


Assuntos
Proliferação de Células/efeitos dos fármacos , Metanfetamina/toxicidade , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Esquema de Medicação , Masculino , Metanfetamina/administração & dosagem , Ratos , Autoadministração
19.
Front Pharmacol ; 5: 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600394

RESUMO

The cardiac field has benefited from the availability of several CaMKII inhibitors serving as research tools to test putative CaMKII pathways associated with cardiovascular physiology and pathophysiology. Successful demonstrations of its critical pathophysiological roles have elevated CaMKII as a key target in heart failure, arrhythmia, and other forms of heart disease. This has caught the attention of the pharmaceutical industry, which is now racing to develop CaMKII inhibitors as safe and effective therapeutic agents. While the first generation of CaMKII inhibitor development is focused on blocking its activity based on ATP binding to its catalytic site, future inhibitors can also target sites affecting its regulation by Ca(2+)/CaM or translocation to some of its protein substrates. The recent availability of crystal structures of the kinase in the autoinhibited and activated state, and of the dodecameric holoenzyme, provides insights into the mechanism of action of existing inhibitors. It is also accelerating the design and development of better pharmacological inhibitors. This review examines the structure of the kinase and suggests possible sites for its inhibition. It also analyzes the uses and limitations of current research tools. Development of new inhibitors will enable preclinical proof of concept tests and clinical development of successful lead compounds, as well as improved research tools to more accurately examine and extend knowledge of the role of CaMKII in cardiac health and disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa