RESUMO
We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Assuntos
Gorduras na Dieta/análise , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Aminoácidos/sangue , Animais , Catecolaminas/urina , Hipotálamo/fisiologia , Masculino , Hipófise/fisiologia , Ratos , Ratos Wistar , Transcriptoma/efeitos dos fármacosRESUMO
Objectives: The majority of esophageal squamous dysplasia (ESD) patients progress slowly, while a subset of patients can undergo recurrence rapidly or progress to invasive cancer even after proper treatment. However, the molecular mechanisms underlying these clinical observations are still largely unknown. Methods: By sequencing the genomic data of 160 clinical samples from 49 tumor-free ESD patients and 88 esophageal squamous cell carcinoma (ESCC) patients, we demonstrated lower somatic mutation and copy number alteration (CNA) burden in ESD compared with ESCC. Results: Cross-species screening and functional assays identified ACSM5 as a novel driver gene for ESD progression. Furthermore, we revealed that miR-4292 promoted ESD progression and could serve as a non-invasive diagnostic marker for ESD. Conclusions: These findings largely expanded our understanding of ESD genetics and tumorigenesis, which possessed promising significance for improving early diagnosis, reducing overtreatment, and identifying high-risk ESD patients.
RESUMO
BACKGROUND: Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS: To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS: In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS: our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Assuntos
Ligamento Amarelo , Estenose Espinal , Camundongos , Animais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Estenose Espinal/metabolismo , Estenose Espinal/patologia , Transdução de Sinais , Hipertrofia/metabolismo , Hipertrofia/patologia , Fibrose , LipídeosRESUMO
m6A methylation has been demonstrated to be one of the most important epigenetic regulation mechanisms in cell differentiation and cancer development especially m6A derived diagnostic and prognostic biomarkers have been identified in the past several years. However, systemic investigation to the interaction between germline single-nucleotide polymorphisms (SNPs) and m6A has not been conducted yet. In this study, we collected previous identified significant thyroid cancer associated SNPs from UKB cohort (358 cases and 407,399 controls) and ICR cohort (3,001 patients and 287,550 controls) and thyroid eQTL (sample size = 574 from GTEx project) and m6A-SNP (N = 1,678,126) were applied to prioritize the candidate SNPs. Finally, five candidate genes (PLEKHA8, SMUG1, CDC123, RMI2, ACSM5) were identified to be thyroid cancer associated m6A-related genetic susceptibility. Loss and gain function studies of m6A writer proteins confirm that ACSM5 is regulated by m6A methylation of mRNA. Moreover, ACSM5 is downregulated in thyroid cancer and inversely correlated with PTC malignancy and patient survival. Together, our study highlight mRNA-seq and m6A-seq double analysis provided a novel approach to identify cancer biomarkers and understanding the heterogeneity of human cancers.
RESUMO
BACKGROUND: Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. METHODS: A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. RESULTS: We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. CONCLUSION: This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.