Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurol Sci ; 43(2): 1365-1374, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34160719

RESUMO

OBJECTIVE: Rolandic epilepsy (RE) is among the most common focal epilepsies in childhood. For the majority of patients with RE and atypical RE (ARE), the etiology remains elusive. We thus screened patients with RE/ARE in order to detect disease-causing variants.. METHODS: A trios-based whole-exome sequencing approach was performed in a cohort of 28 patients with RE/ARE. Clinical data and EEGs were reviewed. Variants were validated by Sanger sequencing. RESULTS: Two compound heterozygous missense variants p.Val272Ile/p.Asn3028Ser and p.Ala3657Val/p.Met4419Val of ADGRV1 were identified in two unrelated familial cases of RE/ARE. All the variants were in the calcium exchanger ß domain and were suggested to be damaging by at least one web-based prediction tool. These variants are not present or are present at a very low minor allele frequency in the gnomAD database. Previously, biallelic ADGRV1 variants (p.Gly2756Arg and p.Glu4410Lys) have been observed in RE, consistent with the observation in this study and supporting the association between ADGRV1 variants and RE. Additionally, a de novo mutation, p.Asp668Asn, in GRIN2B was identified in a sporadic case of ARE, and a missense variant, p.Asn1551Ser, in RyR2 was identified in a family with RE with incomplete penetrance. These genes are all calcium homeostasis associated genes, suggesting the potential effect of calcium homeostasis in RE/ARE. CONCLUSIONS: The results from the present study suggest that the genes ADGRV1, GRIN2B, and RyR2 are associated with RE/ARE. These data link defects in neuronal intracellular calcium homeostasis to RE/ARE pathogenesis implicating that these defects plays an important role in the development of these conditions.


Assuntos
Epilepsia Rolândica , Receptores Acoplados a Proteínas G/genética , Epilepsia Rolândica/genética , Frequência do Gene , Humanos , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequenciamento do Exoma
2.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638692

RESUMO

In contrast to USH2A, variants in ADGRV1 are a minor cause of Usher syndrome type 2, and the associated phenotype is less known. The purpose of the study was to characterize the retinal phenotype of 18 ADGRV1 patients (9 male, 9 female; median age 52 years) and compare it with that of 204 USH2A patients (111 male, 93 female; median age 43 years) in terms of nyctalopia onset, best corrected visual acuity (BCVA), fundus autofluorescence (FAF), and optical coherence tomography (OCT) features. There was no statistical difference in the median age at onset (30 and 18 years; Mann-Whitney U test, p = 0.13); the mean age when 50% of the patients reached legal blindness (≥1.0 log MAR) based on visual acuity (64 years for both groups; log-rank, p = 0.3); the risk of developing advanced retinal degeneration (patch or atrophy) with age (multiple logistic regression, p = 0.8); or the frequency of cystoid macular edema (31% vs. 26%, Fisher's exact test, p = 0.4). ADGRV1 and USH2A retinopathy were indistinguishable in all major functional and structural characteristics, suggesting that the loss of function of the corresponding proteins produces similar effects in the retina. The results are important for counseling ADGRV1 patients, who represent the minor patient subgroup.


Assuntos
Proteínas da Matriz Extracelular/genética , Mutação com Perda de Função , Receptores Acoplados a Proteínas G/genética , Retinose Pigmentar/genética , Síndromes de Usher/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/epidemiologia , Tomografia de Coerência Óptica , Síndromes de Usher/diagnóstico por imagem , Síndromes de Usher/epidemiologia
3.
J Transl Med ; 18(1): 73, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050993

RESUMO

BACKGROUND: Retinitis Pigmentosa (RP) is a clinically and genetically heterogeneous disorder that results in inherited blindness. Despite the large number of genes identified, only ~ 60% of cases receive a genetic diagnosis using targeted-sequencing. The aim of this study was to design a whole genome sequencing (WGS) based approach to increase the diagnostic yield of complex Retinitis Pigmentosa cases. METHODS: WGS was conducted in three family members, belonging to one large apparent autosomal dominant RP family that remained unsolved by previous studies, using Illumina TruSeq library preparation kit and Illumina HiSeq X platform. Variant annotation, filtering and prioritization were performed using a number of open-access tools and public databases. Sanger sequencing of candidate variants was conducted in the extended family members. RESULTS: We have developed and optimized an algorithm, based on the combination of different open-access tools, for variant prioritization of WGS data which allowed us to reduce significantly the number of likely causative variants pending to be manually assessed and segregated. Following this algorithm, four heterozygous variants in one autosomal recessive gene (USH2A) were identified, segregating in pairs in the affected members. Additionally, two pathogenic alleles in ADGRV1 and PDZD7 could be contributing to the phenotype in one patient. CONCLUSIONS: The optimization of a diagnostic algorithm for WGS data analysis, accompanied by a hypothesis-free approach, have allowed us to unmask the genetic cause of the disease in one large RP family, as well as to reassign its inheritance pattern which implies differences in the clinical management of these cases. These results contribute to increasing the number of cases with apparently dominant inheritance that carry causal mutations in recessive genes, as well as the possible involvement of various genes in the pathogenesis of RP in one patient. Moreover, our WGS-analysis approach, based on open-access tools, can easily be implemented by other researchers and clinicians to improve the diagnostic yield of additional patients with inherited retinal dystrophies.


Assuntos
Retinose Pigmentar , Algoritmos , Análise Mutacional de DNA , Humanos , Mutação/genética , Linhagem , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Sequenciamento Completo do Genoma
4.
Adv Exp Med Biol ; 1185: 543-547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884668

RESUMO

Mutations in USH2A, ADGRV1, and WHRN genes cause Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). The proteins encoded by these genes form the periciliary membrane complex (PMC) in photoreceptors. Unlike patients, who show retinal degeneration in their second decade of life, mice carrying USH2 mutations have very-late-onset retinal degeneration, although the PMC is disrupted. A similar weak retinal degeneration phenotype was also reported in ush2a mutant zebrafish. The lack of appropriate USH2 animal models hinders our understanding on PMC function in photoreceptors and retinal pathogenesis caused by USH2 mutations. In this study, we examined the molecular composition of the PMC and the morphology of the PMC and its surrounding subcellular structure in Syrian hamster photoreceptors. We demonstrate that the PMC and its neighboring structure in hamsters are similar to those in mice. Therefore, the Syrian hamster may not offer advantages over the mouse as an animal model for USH2 pathogenic studies.


Assuntos
Proteínas da Matriz Extracelular/genética , Células Fotorreceptoras/patologia , Síndromes de Usher/genética , Animais , Cricetinae , Modelos Animais de Doenças , Mesocricetus , Mutação , Síndromes de Usher/patologia
5.
J Allergy Clin Immunol ; 141(5): 1659-1667.e11, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28927820

RESUMO

BACKGROUND: Atopy, an endotype underlying allergic diseases, has a substantial genetic component. OBJECTIVE: Our goal was to identify novel genes associated with atopy in asthma-ascertained families. METHODS: We implemented a 3-step analysis strategy in 3 data sets: the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) data set (1660 subjects), the Saguenay-Lac-Saint-Jean study data set (1138 subjects), and the Medical Research Council (MRC) data set (446 subjects). This strategy included a single nucleotide polymorphism (SNP) genome-wide association study (GWAS), the selection of related gene pairs based on statistical filtering of GWAS results, and text-mining filtering using Gene Relationships Across Implicated Loci and SNP-SNP interaction analysis of selected gene pairs. RESULTS: We identified the 5q14 locus, harboring the adhesion G protein-coupled receptor V1 (ADGRV1) gene, which showed genome-wide significant association with atopy (rs4916831, meta-analysis P value = 6.8 × 10-9). Statistical filtering of GWAS results followed by text-mining filtering revealed relationships between ADGRV1 and 3 genes showing suggestive association with atopy (P ≤ 10-4). SNP-SNP interaction analysis between ADGRV1 and these 3 genes showed significant interaction between ADGRV1 rs17554723 and 2 correlated SNPs (rs2134256 and rs1354187) within the dynein axonemal heavy chain 5 (DNAH5) gene (Pmeta-int = 3.6 × 10-5 and 6.1 × 10-5, which met the multiple-testing corrected threshold of 7.3 × 10-5). Further conditional analysis indicated that rs2134256 alone accounted for the interaction signal with rs17554723. CONCLUSION: Because both DNAH5 and ADGRV1 contribute to ciliary function, this study suggests that ciliary dysfunction might represent a novel mechanism underlying atopy. Combining GWAS and epistasis analysis driven by statistical and knowledge-based evidence represents a promising approach for identifying new genes involved in complex traits.


Assuntos
Dineínas do Axonema/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/genética , Adulto , Asma/genética , Estudos de Casos e Controles , Estudos Epidemiológicos , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino
6.
Epilepsia ; 59(2): 381-388, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266188

RESUMO

OBJECTIVE: To investigate the significance of variation in ADGRV1 (also known as GPR98, MASS1, and VLGR1), MEF2C, and other genes at the 5q14.3 chromosomal locus in myoclonic epilepsy. METHODS: We studied the epilepsy phenotypes of 4 individuals with 5q14.3 deletion and found that all had myoclonic seizures. We then screened 6 contiguous genes at 5q14.3, MEF2C, CETN3, MBLAC2, POLR3G, LYSMD3, and ADGRV1, in a 95-patient cohort with epilepsy and myoclonic seizures. Of these genes, point mutations in MEF2C cause a phenotype involving seizures and intellectual disability. A role for ADGRV1 in epilepsy has been proposed previously, based on a recessive mutation in the Frings mouse model of audiogenic seizures, as well as a shared homologous region with another epilepsy gene, LGI1. RESULTS: Six patients from the myoclonic epilepsy cohort had likely pathogenic ultra-rare ADGRV1 variants, and statistical analysis showed that ultra-rare variants were significantly overrepresented when compared to healthy population data from the Genome Aggregation Database. Of the remaining genes, no definite pathogenic variants were identified. SIGNIFICANCE: Our data suggest that the ADGRV1 variation contributes to epilepsy with myoclonic seizures, although the inheritance pattern may be complex in many cases. In patients with 5q14.3 deletion and epilepsy, ADGRV1 haploinsufficiency likely contributes to seizure development. The latter is a shift from current thinking, as MEF2C haploinsufficiency has been considered the main cause of epilepsy in 5q14.3 deletion syndrome. In cases of 5q14.3 deletion and epilepsy, seizures likely occur due to haploinsufficiency of one or both of ADGRV1 and MEF2C.


Assuntos
Epilepsias Mioclônicas/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Ligação ao Cálcio/genética , Criança , Cromossomos Humanos Par 5/genética , Estudos de Coortes , Epilepsias Mioclônicas/complicações , Haploinsuficiência , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Fatores de Transcrição MEF2/genética , Masculino , Mutação Puntual , RNA Polimerase III/genética , Síndrome
7.
Gene ; 922: 148562, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754567

RESUMO

BACKGROUND: Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS: ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS: No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS: We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos Endogâmicos CBA , Síndromes de Usher , Animais , Síndromes de Usher/genética , Síndromes de Usher/patologia , Camundongos , Masculino , Feminino , Fenótipo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Retina/patologia , Retina/metabolismo , Cruzamentos Genéticos
8.
Front Pediatr ; 12: 1299341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450295

RESUMO

Introduction: Rapid advancements in Next Generation Sequencing (NGS) and bioinformatics tools have allowed physicians to obtain genetic testing results in a more rapid, cost-effective, and comprehensive manner than ever before. Around 50% of pediatric sensorineural hearing loss (SNHL) cases are due to a genetic etiology, thus physicians regularly utilize targeted sequencing panels that identify variants in genes related to SNHL. These panels allow for early detection of pathogenic variants which allows physicians to provide anticipatory guidance to families. Molecular testing does not always reveal a clear etiology due to the presence of multigenic variants with varying classifications, including the presence of Variants of Uncertain Significance (VUS). This study aims to perform a preliminary bioinformatics characterization of patients with variants associated with Type II Usher Syndrome in the presence of other multigenic variants. We also provide an interpretation algorithm for physicians reviewing molecular results with medical geneticists. Methods: Review of records for multigenic and/or VUS results identified several potential subjects of interest. For the purposes of this study, two ADGRV1 compound heterozygotes met inclusion criteria. Sequencing, data processing, and variant calling (the process by which variants are identified from sequence data) was performed at Invitae (San Francisco CA). The preliminary analysis followed the recommendations outlined by the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) in 2015 and 2019. The present study utilizes computational analysis, predictive data, and population data as well as clinical information from chart review and publicly available information in the ClinVar database. Results: Two subjects were identified as compound heterozygotes for variants in the gene ADGRV1. Subject 1's variants were predicted as deleterious, while Subject 2's variants were predicted as non-deleterious. These results were based on known information of the variants from ClinVar, multiple lines of computational data, population databases, as well as the clinical presentation. Discussion: Early molecular diagnosis through NGS is ideal, as families are then able to access a wide range of resources that will ultimately support the child as their condition progresses. We recommend that physicians build strong relationships with medical geneticists and carefully review their interpretation before making recommendations to families, particularly when addressing the VUS. Reclassification efforts of VUS are supported by studies like ours that provide evidence of pathogenic or benign effects of variants.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39253919

RESUMO

BACKGROUND: Audiogenic Epilepsy (AEs) is a subtype of epileptic seizure that is generally caused by high-intensity sounds. A large number of traditional medicines has been explored in this lieu where our study chased Galium verum L. (Rubiaceae), an herbal plant which is commonly known as Lady's Bedstraw, that contains a highly rich chemical composition including flavonoids (Hispidulin, Quercetin, and Kaempferol), and phenolic acids (chlorogenic acid, caftaric acid, and gallic acid). G verum is well known for its antioxidant, neuroprotective, and anti-inflammatory properties. Recently, the unique role of Adhesion G Protein- Coupled Receptor V1 (ADGRV1) protein in the progression of audiogenic epilepsy has been explored. AIM AND OBJECTIVES: This study aimed to examine the potent phytoconstituents of the hydroalcoholic extract of G. verum L. (HEGV) using analytical techniques. Additionally, our study sought to evaluate the antioxidant, neuroprotective, anti-inflammatory properties, and antiepileptic potency of HEGV by targeting ADGRV1 via in silico and in vitro analyses using SHSY5Y cells. METHOD: HPLC and LC-MS techniques were employed to identify the flavonoids, iridoids, and phenolic acid derivatives present in HEGV. DPPH (2,2-diphenyl-1-picrylhydrazyl), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays were performed to confirm the antioxidant potential of the extract. Additionally, in silico molecular docking and molecular dynamic studies were performed using AutoDock Vina software to analyze the possible interactions between crucial phytoconstituents of HEGV and ADGRV1, followed by cell line analysis. In the in vitro analysis, antioxidant, neuroprotective, and anti-inflammatory properties were assessed via cell viability assay, IL, GABA, and glutamate estimation. RESULTS: LC-MS and HPLC analyses revealed high concentrations of hispidulin, a major flavonoid found in HEGV. HEGV exhibited moderate-to-high free radical-scavenging activities comparable to those of ascorbic acid. Docking analysis demonstrated that hispidulin has a stronger binding affinity with ADGRV1 (Vina score = -8.6 kcal/mol) than other compounds. Furthermore, cell line analysis revealed that the MSG exacerbates the neurodegeneration and neuroinflammation, whereas, HEGV and Hispidulin both possess neuroprotective, antioxidant, and antiepileptic activities. CONCLUSION: HEGV and Hispidulin proved to be promising candidates for treating audiogenic epilepsy by modulating ADGRV1.

10.
Biomedicines ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37893031

RESUMO

Sensorineural age-related hearing loss affects a large proportion of the elderly population, and has both environmental and genetic causes. Notwithstanding increasing interest in this debilitating condition, the genetic risk factors remain largely unknown. Here, we report the case of two sisters affected by isolated profound sensorineural hearing loss after the age of seventy. Genomic DNA sequencing revealed that the siblings shared two monoallelic variants in two genes linked to Usher Syndrome (USH genes), a recessive disorder of the ear and the retina: a rare pathogenic truncating variant in USH1G and a previously unreported missense variant in ADGRV1. Structure predictions suggest a negative effect on protein stability of the latter variant, allowing its classification as likely pathogenic according to American College of Medical Genetics criteria. Thus, the presence in heterozygosis of two recessive alleles, which each cause syndromic deafness, may underlie digenic inheritance of the age-related non-syndromic hearing loss of the siblings, a hypothesis that is strengthened by the knowledge that the two genes are integrated in the same functional network, which underlies stereocilium development and organization. These results enlarge the spectrum and complexity of the phenotypic consequences of USH gene mutations beyond the simple Mendelian inheritance of classical Usher syndrome.

11.
Cells ; 12(12)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371069

RESUMO

Worldwide, around 40,000 people progressively lose their eyesight as a consequence of retinitis pigmentosa (RP) caused by pathogenic variants in the ADGRV1 gene, for which currently no treatment options exist. A model organism that mimics the human phenotype is essential to unravel the exact pathophysiological mechanism underlying ADGRV1-associated RP, and to evaluate future therapeutic strategies. The introduction of CRISPR/Cas-based genome editing technologies significantly improved the possibilities of generating mutant models in a time- and cost-effective manner. Zebrafish have been recognized as a suitable model to study Usher syndrome-associated retinal dysfunction. Using CRISPR/Cas9 technology we introduced a 4bp deletion in adgrv1 exon 9 (adgrv1rmc22). Immunohistochemical analysis showed that Adgrv1 was absent from the region of the photoreceptor connecting cilium in the adgrv1rmc22 zebrafish retina. Here, the absence of Adgrv1 also resulted in reduced levels of the USH2 complex members usherin and Whrnb, suggesting that Adgrv1 interacts with usherin and Whrnb in zebrafish photoreceptors. When comparing adgrv1rmc22 zebrafish with wild-type controls, we furthermore observed increased levels of aberrantly localized rhodopsin in the photoreceptor cell body, and decreased electroretinogram (ERG) B-wave amplitudes which indicate that the absence of Adgrv1 results in impaired retinal function. Based on these findings we present the adgrv1rmc22 zebrafish as the first ADGRV1 mutant model that displays an early retinal dysfunction. Moreover, the observed phenotypic changes can be used as quantifiable outcome measures when evaluating the efficacy of future novel therapeutic strategies for ADGRV1-associated RP.


Assuntos
Retinose Pigmentar , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Retina , Retinose Pigmentar/genética
12.
Seizure ; 103: 108-114, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36399868

RESUMO

OBJECTIVE: To investigate the genotype and phenotype of epilepsy caused by ADGRV1 variants in Chinese children. METHODS: A total of 625 patients with epilepsy who had undergone whole-exon gene sequencing or epilepsy and related paroxysmal disease gene panel sequencing were recruited. Variants were evaluated for susceptibility pathogenicity based on their frequency in the Genome Aggregation Database (≤ 0.001). We used six algorithms (sorting intolerant from tolerant (SIFT), PolyPhen-2, Mutation Taster, CADD, REVEL and Splice AI) that predicted that the ADGRV1 variant would have a harmful impact on the function of genes and gene products. We retrospectively reviewed the clinical information of patients with susceptible pathogenic ADGRV1 variants. The relationship between the genotype and phenotype was also analyzed. RESULTS: Eighteen patients with epilepsy were found to have likely pathogenic variants in ADGRV1. The rate of ADGRV1 variants in patients with epilepsy in this cohort was 2.88%. A total of 19 ADGRV1 variants were found, of which 13 were novel and 6 had been previously reported. Eleven out of the 18 children (61.1%) had febrile and afebrile seizures (FS and AS), two children had only FS, one child had infantile spasms, and the other four children had only AS that occurred during sleep (Rolandic epilepsy or atypical Rolandic epilepsy). SIGNIFICANCE: Our study showed a statistically significant association between ADGRV1 variants and FS and AS (p < 0.05), supporting the hypothesis that ADGRV1 is a susceptibility gene for Rolandic epilepsy and infantile spasms. Most epilepsy cases caused by ADGRV1 variants have a good prognosis.


Assuntos
Epilepsia Rolândica , Convulsões Febris , Espasmos Infantis , Humanos , China , Febre , Genótipo , Mutação/genética , Fenótipo , Estudos Retrospectivos
13.
Front Mol Neurosci ; 15: 864074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813073

RESUMO

Objective: ADGRV1 gene encodes adhesion G protein-coupled receptor-V1 that is involved in synaptic function. ADGRV1 mutations are associated with audio-visual disorders. Although previous experimental studies suggested that ADGRV1 variants were associated with epilepsy, clinical evidence is limited and the phenotype spectrum is to be defined. Methods: Trio-based targeting sequencing was performed in a cohort of 101 cases with febrile seizure (FS) and epilepsy with antecedent FS. Protein modeling was used to assess the damaging effects of variants. The genotype-phenotype correlations of the ADGRV1 variants in epilepsy and audio-visual disorders were analyzed. Results: ADGRV1 variants were identified in nine unrelated cases (8.91%), including two heterozygous frameshift variants, six heterozygous missense variants, and a pair of compound heterozygous variants. These variants presented a statistically higher frequency in this cohort than that in control populations. Most missense variants were located at CalX-ß motifs and changed the hydrogen bonds. These variants were inherited from the asymptomatic parents, indicating an incomplete penetrance. We also identified SCN1A variants in 25 unrelated cases (24.75%) and SCN9A variants in 3 unrelated cases (2.97%) in this cohort. Contrary to SCN1A variant-associated epilepsy that revealed seizure was aggravated by sodium channel blockers, ADGRV1 variants were associated with mild epilepsy with favorable responses to antiepileptic drugs. The patients denied problems with audio-visual-vestibular abilities in daily life. However, audio-visual tests revealed auditory and visual impairment in the patient with compound heterozygous variants, auditory or vestibular impairment in the patients with heterozygous frameshift, or hydrogen-bond changed missense variants but no abnormalities in the patients with missense variants without hydrogen-bond changes. Previously reported ADGRV1 variants that were associated with audio-visual disorders were mostly biallelic/destructive variants, which were significantly more frequent in the severe phenotype of audio-visual disorders (Usher syndrome 2) than in other mild phenotypes. In contrast, the variants identified in epilepsy were monoallelic, missense mainly located at CalX-ß, or affected isoforms VLGR1b/1c. Significance: ADGRV1 is potentially associated with FS-related epilepsy as a susceptibility gene. The genotype, submolecular implication, isoforms, and damaging severity of the variants explained the phenotypical variations. ADGRV1 variant-associated FS/epilepsy presented favorable responses to antiepileptic drugs, implying a clinical significance.

14.
Front Mol Biosci ; 9: 923740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836927

RESUMO

Hearing relies on the transduction of sound-evoked vibrations into electrical signals, occurring in the stereocilia bundle of inner ear hair cells. The G protein-coupled receptor (GPCR) ADGRV1 and the multi-PDZ protein PDZD7 play a critical role in the formation and function of stereocilia through their scaffolding and signaling properties. During hair cell development, the GPCR activity of ADGRV1 is specifically inhibited by PDZD7 through an unknown mechanism. Here, we describe the key interactions mediated by the two N-terminal PDZ domains of PDZD7 and the cytoplasmic domain of ADGRV1. Both PDZ domains can bind to the C-terminal PDZ binding motif (PBM) of ADGRV1 with the critical contribution of atypical C-terminal ß extensions. The two PDZ domains form a supramodule in solution, stabilized upon PBM binding. Interestingly, we showed that the stability and binding properties of the PDZ tandem are affected by two deafness-causing mutations located in the binding grooves of PDZD7 PDZ domains.

15.
Front Neurol ; 12: 738272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744978

RESUMO

Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.

16.
Seizure ; 88: 60-72, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33831796

RESUMO

PURPOSE: Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS: We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS: Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION: The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Deficiência Intelectual , Fatores de Transcrição MEF2 , Eletroencefalografia , Epilepsia/genética , Haploinsuficiência , Humanos , Deficiência Intelectual/genética , Fatores de Transcrição MEF2/genética , Convulsões
17.
Heliyon ; 7(8): e07804, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34458631

RESUMO

Trio-next generation sequencing is useful to identify undiagnosed inherited diseases. We have attended a patient with trigenic ADH5/ALDH2/ADGRV1 pathogenic variants, which caused two distinct diseases, myelodysplastic syndrome and Usher syndrome. Whole genome sequencing of peripheral blood from the patient and his parents were applied to identify disease-causing genes. Sanger sequencing was performed to validate the identified ADH5/ALDH2/ADGRV1 variants. Our results identified disease-associated variants in ADGRV1 (disease inheritance autosomal recessive) and in ADH5 (disease inheritance also autosomal recessive) and a variant in ALDH2 (disease inheritance autosomal dominant). Although the variants identified in ADH5 and ALDH2 have been reported, their co-existence in association with disease-causing variation in a third gene has not. They broaden the spectrum of ADGRV1 in Usher syndrome. Findings on next generation sequencing guided rapid and accurate diagnosis, resulting in patient-tailored therapeutic intervention.

18.
Curr Pharm Des ; 26(2): 253-259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951160

RESUMO

BACKGROUND: Cell-cell adhesion is essential in maintaining the structure and function of an organ. Several adhesion molecules have recently been identified as associated with heroin dependence in both genetic and peripheral plasma studies. METHODS AND RESULTS: We reviewed literature concerning studies on adhesion molecules in opioid addictions in rodents and human, including human genetic associations in different ethnic groups, and treatment responses to methadone maintenance treatment in heroin-dependent patients. CONCLUSION: Some important and novel findings were summarized and discussed. Adhesion molecules in the peripheral plasma, e.g., cadherin-2 (CDH2), may be biomarkers for both methadone treatment outcome and nectin 4 may be an indicator for continued opioid use. Neural cell adhesion molecule (NCAM) in the central nervous system may regulate opioid withdrawal and analgesic responses. Future studies to uncover the mechanisms underlying the involvement of adhesion molecules in the pathological process of addictions will be an important research direction in the field.


Assuntos
Moléculas de Adesão de Célula Nervosa/sangue , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Biomarcadores/sangue , Caderinas/sangue , Humanos , Metadona/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
19.
Children (Basel) ; 7(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962041

RESUMO

Febrile seizure (FS) is related to a febrile illness (temperature > 38 °C) not caused by an infection of central nervous system, without neurologic deficits in children aged 6-60 months. The family study implied a polygenic model in the families of proband(s) with single FS, however in families with repeated FS, inheritance was matched to autosomal dominance with reduced disease penetrance. A 20 month-old girl showed recurrent FS and afebrile seizures without developmental delay or intellectual disability. The seizures disappeared after 60 months without anti-seizure medication. The 35 year-old proband's mother also experienced five episodes of simple FS and two episodes of unprovoked seizures before 5 years old. Targeted exome sequencing was conducted along with epilepsy/seizure-associated gene-filtering to identify the candidate causative mutation. As a result, a heterozygous c.2039A>G of the ADGRV1 gene leading to a codon change of aspartic acid to glycine at the position 680 (rs547076322) was identified. This protein's glycine residue is highly conserved, and its allele frequency is 0.00002827 in the gnomAD population database. ADGRV1 mutation may have an influential role in the occurrence of genetic epilepsies, especially those with febrile and afebrile seizures. Further investigation of ADGRV1 mutations is needed to prove that it is a significant susceptible gene for febrile and/or afebrile seizures in early childhood.

20.
Ophthalmic Genet ; 39(4): 517-521, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883260

RESUMO

BACKGROUND: To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. MATERIALS AND METHODS: Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. RESULTS: Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. CONCLUSIONS: The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.


Assuntos
Povo Asiático/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Síndromes de Usher/genética , Adulto , Audiometria , China/epidemiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Heterozigoto , Humanos , Masculino , Linhagem , Tomografia de Coerência Óptica , Síndromes de Usher/diagnóstico , Acuidade Visual/fisiologia , Testes de Campo Visual , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa