Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105296, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774974

RESUMO

3D chromatin organization plays a critical role in regulating gene expression, DNA replication, recombination, and repair. While initially discovered for its role in sister chromatid cohesion, emerging evidence suggests that the cohesin complex (SMC1, SMC3, RAD21, and SA1/SA2), facilitated by NIPBL, mediates topologically associating domains and chromatin loops through DNA loop extrusion. However, information on how conformational changes of cohesin-NIPBL drive its loading onto DNA, initiation, and growth of DNA loops is still lacking. In this study, high-speed atomic force microscopy imaging reveals that cohesin-NIPBL captures DNA through arm extension, assisted by feet (shorter protrusions), and followed by transfer of DNA to its lower compartment (SMC heads, RAD21, SA1, and NIPBL). While binding at the lower compartment, arm extension leads to the capture of a second DNA segment and the initiation of a DNA loop that is independent of ATP hydrolysis. The feet are likely contributed by the C-terminal domains of SA1 and NIPBL and can transiently bind to DNA to facilitate the loading of the cohesin complex onto DNA. Furthermore, high-speed atomic force microscopy imaging reveals distinct forward and reverse DNA loop extrusion steps by cohesin-NIPBL. These results advance our understanding of cohesin by establishing direct experimental evidence for a multistep DNA-binding mechanism mediated by dynamic protein conformational changes.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , Cromatina , Coesinas
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791183

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments. Complexes of APE1 with DNA containing G-rich segments were visualized, and analysis of the complexes revealed the affinity of APE1 to G-rich DNA sequences, and their yield was as high as 53%. Furthermore, APE1 is capable of binding two DNA segments leading to the formation of loops in the DNA-APE1 complexes. The analysis of looped APE1-DNA complexes revealed that APE1 can bridge G-rich segments of DNA. The yield of loops bridging two G-rich DNA segments was 41%. Analysis of protein size in various complexes was performed, and these data showed that loops are formed by APE1 monomer, suggesting that APE1 has two DNA binding sites. The data led us to a model for the interaction of APE1 with DNA and the search for the specific sites. The implication of these new APE1 properties in organizing DNA, by bringing two distant sites together, for facilitating the scanning for damage and coordinating repair and transcription is discussed.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Humanos , Sítios de Ligação , DNA/metabolismo , DNA/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Microscopia de Força Atômica , Ligação Proteica
3.
Nanotechnology ; 34(45)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37207634

RESUMO

In this paper, a software-hardware integrated approach is proposed for high-speed, large-range tapping mode imaging of atomic force microscope (AFM). High speed AFM imaging is needed in various applications, particularly in interrogating dynamic processes at nanoscale such as polymer crystallization process. Achieving high speed in tapping-mode AFM imaging is challenging as the probe-sample interaction during the imaging process is highly nonlinear, making the tapping motion highly sensitive to the probe sample spacing, and thereby, difficult to maintain at high speed. Increasing the speed via hardware bandwidth enlargement, however, leads to a substantially reduction of the imaging area. Contrarily, the imaging speed can be increased without loss of the scan size through control (algorithm)-based approach. For example, the recently-developed adaptive multiloop mode (AMLM) technique has demonstrated its efficacy in increasing the tapping-mode imaging speed without loss of scan size. Further improvement, however, has been limited by the hardware bandwidth and the online signal processing speed and computation complexity involved. Thus, in this paper, the AMLM technique is further enhanced to optimize the probe tapping regulation, and integrated with a field programmable gate array platform to further increase the imaging speed without loss of quality and scan range. Experimental implementation of the proposed approach demonstrates that high-quality imaging can be achieved at a high-speed scanning rate of 100 Hz and higher, and over a large imaging area of over 20µm.

4.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203505

RESUMO

The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.


Assuntos
Imunoglobulina G , Simulação de Dinâmica Molecular , Adsorção , Receptores Purinérgicos P2X2 , Microscopia de Força Atômica , Complexos Multiproteicos
5.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362007

RESUMO

The adhesive properties of amyloid fibers are thought to play a crucial role in various negative and positive aggregation processes, the study of which might help in their understanding and control. Amyloids have been prepared from two proteins, lysozyme and ß-lactoglobulin, as well as an Exendin-4 derivative miniprotein (E5). Thermal treatment was applied to form amyloids and their structure was verified by thioflavin T (ThT), 8-Anilino-1-naphthalenesulfonic acid (ANS) dye tests and electronic circular dichroism spectroscopy (ECD). Adsorption properties of the native and amyloid forms of the three proteins were investigated and compared using the mass-sensitive quartz crystal microbalance (QCM) technique. Due to the possible electrostatic and hydrophobic interactions, similar adsorbed amounts were found for the native or amyloid forms, while the structures of the adsorbed layers differed significantly. Native proteins formed smooth and dense adsorption layers. On the contrary, a viscoelastic, highly loose layer was formed in the presence of the amyloid forms, shown by increased motional resistance values determined by the QCM technique and also indicated by atomic force microscopy (AFM) and wettability measurements. The elongated structure and increased hydrophobicity of amyloids might contribute to this kind of aggregation.


Assuntos
Amiloide , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Microscopia de Força Atômica/métodos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Amiloidogênicas , Propriedades de Superfície
6.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269945

RESUMO

The effects of membranes on the early-stage aggregation of amyloid ß (Aß) have come to light as potential mechanisms by which neurotoxic species are formed in Alzheimer's disease. We have shown that direct Aß-membrane interactions dramatically enhance the Aß aggregation, allowing for oligomer assembly at physiologically low concentrations of the monomer. Membrane composition is also a crucial factor in this process. Our results showed that apart from phospholipids composition, cholesterol in membranes significantly enhances the aggregation kinetics. It has been reported that free cholesterol is present in plaques. Here we report that free cholesterol, along with its presence inside the membrane, further accelerate the aggregation process by producing aggregates more rapidly and of significantly larger sizes. These aggregates, which are formed on the lipid bilayer, are able to dissociate from the surface and accumulate in the bulk solution; the presence of free cholesterol accelerates this dissociation as well. All-atom molecular dynamics simulations show that cholesterol binds Aß monomers and significantly changes the conformational sampling of Aß monomer; more than doubling the fraction of low-energy conformations compared to those in the absence of cholesterol, which can contribute to the aggregation process. The results indicate that Aß-lipid interaction is an important factor in the disease prone amyloid assembly process.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Colesterol , Humanos , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/metabolismo
7.
Molecules ; 24(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640276

RESUMO

Recently polymer encapsulated surface-enhanced-Raman-scattering (SERS) probes with internal noble metal core-shell structure has found growing applications in biomedical applications. Here we studied the SERS spectra of Au@Ag-4MBA@PVP (4MBA: 4-mercaptobenzoic acid; PVP: polyvinylpyrrolidone) plasmonic nanoparticles produced from a chemical reduction method. By linking the atomic force microscope (AFM) with the homebuilt confocal Raman spectrometer thus to use AFM images as guidance, we realized the measurement of the SERS spectra from separated nanoparticles. We investigated the cases for single nanoparticles and for dimer structures and report several observed results including SERS spectra linearly scaled with laser power, abrupt boosting and abnormal shape changing of SERS spectra for dimer structures. Based on the finite element method simulation, we explained the observed ratio of SERS signals between the dimer structure and the single nanoparticle, and attributed the observed abnormal spectra to the photothermal effect of these plasmonic nanoparticles. Our study provides valuable guidance for choosing appropriate laser power when applying similar SERS probes to image biological cells.


Assuntos
Benzoatos/química , Ouro/química , Povidona/química , Prata/química , Compostos de Sulfidrila/química , Análise de Elementos Finitos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Modelos Químicos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
8.
Mycopathologia ; 183(1): 291-310, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128932

RESUMO

During the past decades, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Although most of the works concerned bacteria, AFM also permitted major breakthroughs in the understanding of physiology and pathogenic mechanisms of some fungal species associated with cystic fibrosis. Complementary to electron microscopies, AFM offers unprecedented insights to visualize the cell wall architecture and components through three-dimensional imaging with nanometer resolution and to follow their dynamic changes during cell growth and division or following the exposure to drugs and chemicals. Besides imaging, force spectroscopy with piconewton sensitivity provides a direct means to decipher the forces governing cell-cell and cell-substrate interactions, but also to quantify specific and non-specific interactions between cell surface components at the single-molecule level. This nanotool explores new ways for a better understanding of the structures and functions of the cell surface components and therefore may be useful to elucidate the role of these components in the host-pathogen interactions as well as in the complex interplay between bacteria and fungi in the lung microbiome.


Assuntos
Fibrose Cística/microbiologia , Fungos/patogenicidade , Pneumopatias Fúngicas/microbiologia , Microscopia de Força Atômica/métodos , Fibrose Cística/complicações , Interações Hospedeiro-Patógeno , Humanos
9.
Biochim Biophys Acta ; 1858(3): 500-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26577274

RESUMO

A number of pore-forming toxins (PFTs) can assemble on lipid membranes through their specific interactions with lipids. The oligomeric assemblies of some PFTs have been successfully revealed either by electron microscopy (EM) and/or atomic force microscopy (AFM). Unlike EM, AFM imaging can be performed under physiological conditions, enabling the real-time visualization of PFT assembly and the transition from the prepore state, in which the toxin does not span the membrane, to the pore state. In addition to characterizing PFT oligomers, AFM has also been used to examine toxin-induced alterations in membrane organization. In this review, we summarize the contributions of AFM to the understanding of both PFT assembly and PFT-induced membrane reorganization. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Assuntos
Membrana Celular/ultraestrutura , Microscopia de Força Atômica , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Multimerização Proteica , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estrutura Quaternária de Proteína
10.
J Mol Recognit ; 30(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28120483

RESUMO

Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis.


Assuntos
Capilares/ultraestrutura , Células Endoteliais/ultraestrutura , Fígado/ultraestrutura , Animais , Camundongos , Microscopia de Força Atômica
11.
Biotechnol Bioeng ; 114(10): 2173-2186, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28543036

RESUMO

Hydrophobins are amphiphilic fungal proteins endowed with peculiar characteristics, such as a high surface activity and an interface triggered self-assembly. Several applications of these proteins have been proposed in the food, cosmetics and biomedical fields. Moreover, their use as proteinaceous coatings can be effective for materials and nanomaterials applications. The discovery of novel hydrophobins with diverse properties may be advantageous from both the scientific and industrial points of view. Stressful environmental conditions of fungal growth may induce the production of proteins with peculiar features. Two Class I hydrophobins from fungi isolated from marine environment have been recently purified. Herein, their propensity to aggregate forming nanometric fibrillar structures has been compared, using different techniques, such as circular dichroism, dynamic light scattering and Thioflavin T fluorescence assay. Furthermore, TEM and AFM images indicate that the interaction of these proteins with specific surfaces, are crucial in the formation of amyloid fibrils and in the assembly morphologies. These self-assembling proteins show promising properties as bio-coating for different materials via a green process. Biotechnol. Bioeng. 2017;114: 2173-2186. © 2017 Wiley Periodicals, Inc.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Organismos Aquáticos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestrutura , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Propriedades de Superfície
12.
Chemistry ; 22(46): 16598-16601, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27689340

RESUMO

Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Citosina/análogos & derivados , DNA/metabolismo , Nucleossomos/química , Citosina/química , Metilação de DNA , Nucleossomos/metabolismo , Oxirredução
13.
Colloids Surf B Biointerfaces ; 235: 113765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309153

RESUMO

Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.


Assuntos
Bicamadas Lipídicas , Peptídeos , Bicamadas Lipídicas/química , Peptídeos/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular
14.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831563

RESUMO

Early ascertainment of metastatic tumour phases is crucial to improve cancer survival, formulate an accurate prognostic report of disease advancement, and, most importantly, quantify the metastatic progression and malignancy state of primary cancer cells with a universal numerical indexing system. This work proposes an early improvement to metastatic cancer detection with 97.7 nm spatial resolution by indexing the metastatic cancer phases from the analysis of atomic force microscopy images of human colorectal cancer histological sections. The procedure applies variograms of residuals of Gaussian filtering and theta statistics of colorectal cancer tissue image settings. This methodology elucidates the early metastatic progression at the nanoscale level by setting metastatic indexes and critical thresholds based on relatively large histological sections and categorising the malignancy state of a few suspicious cells not identified with optical image analysis. In addition, we sought to detect early tiny morphological differentiations indicating potential cell transition from epithelial cell phenotypes of low metastatic potential to those of high metastatic potential. This metastatic differentiation, which is also identified in higher moments of variograms, sets different hierarchical levels for metastatic progression dynamics.

15.
DNA Repair (Amst) ; 128: 103528, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392578

RESUMO

DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.


Assuntos
Proteínas , Imagem Individual de Molécula , Sequência de Bases , Proteínas/química , DNA/metabolismo , Microscopia de Força Atômica/métodos
16.
Acta Biomater ; 146: 274-283, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487427

RESUMO

Osteoarthritis (OA) is a joint disease affecting millions of patients worldwide. During OA onset and progression, the articular cartilage is destroyed, but the underlying complex mechanisms remain unclear. Here, we uncover changes in the thickness of collagen fibers and their composition at the onset of OA. For articular cartilage explants from knee joints of OA patients, we find that type I collagen-rich fibrocartilage-like tissue was formed in macroscopically intact cartilage, distant from OA lesions. Importantly, the number of thick fibers (>100 nm) has decreased early in the disease, followed by complete absence of thick fibers in advanced OA. We have obtained these results by a combination of high-resolution atomic force microscopy imaging under near-native conditions, immunofluorescence, scanning electron microscopy and a fluorescence-based classification of the superficial chondrocyte spatial organization. Taken together, our data suggests that the loss of tissue functionality in early OA cartilage is caused by a reduction of thick type II collagen fibers, likely due to the formation of type I collagen-rich fibrocartilage, followed by the development of focal defects in later OA stages. We anticipate that such an integrative characterization will be very beneficial for an in-depth understanding of other native biological tissues and the development of sustainable biomaterials. STATEMENT OF SIGNIFICANCE: In early osteoarthritis (OA) the cartilage appears macroscopically intact. However, this study demonstrates that the collagen network already changes in early OA by collagen fiber thinning and the formation of fibrocartilage-like tissue. Both nanoscopic deficiencies already occur in macroscopically intact regions of the human knee joint and are likely connected to processes that result in a weakened extracellular matrix. This study enhances the understanding of earliest progressive cartilage degeneration in the absence of external damage. The results suggest a determination of the mean collagen fiber thickness as a new target for the detection of early OA and a regulation of type I collagen synthesis as a new path for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/patologia , Condrócitos/fisiologia , Colágeno Tipo I , Colágeno Tipo II , Humanos , Osteoartrite/patologia
17.
Carbohydr Polym ; 284: 119191, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287909

RESUMO

Bone Morphogenetic Protein (BMP-2) is an osteoinductive growth factor clinically used for bone regeneration. Tuneable sustained strategies for BMP-2 delivery are intensely developed to avoid severe complications related to supraphysiological doses applied. To address this issue, we investigated the ability of the bacterial exopolysaccharide (EPS) called Infernan produced by the deep-sea hydrothermal vent bacterium Alteromonas infernus, exhibiting both glycosaminoglycan-mimetic and physical gelling properties, to efficiently bind and release the bioactive BMP-2. Two delivery systems were designed based on BMP-2 retention in either single or complex EPS-based microgels, both manufactured using a microfluidic approach. BMP-2 release kinetics were highly influenced by the ionic strength, affecting both microgel stability and growth factor/EPS binding, appearing essential for BMP-2 bioactivity. The osteogenic activity of human bone-marrow derived mesenchymal stem cells studied in vitro emphasized that Infernan microgels constitute a promising platform for BMP-2 delivery for further in vivo bone repair.


Assuntos
Microgéis , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Proteínas Morfogenéticas Ósseas , Regeneração Óssea , Glicosaminoglicanos , Humanos , Osteogênese
18.
Biophys Rep ; 8(4): 212-224, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37288005

RESUMO

The functions of DNA-binding proteins are dependent on protein-induced DNA distortion, the binding preference to special sequences, DNA secondary structures, the binding kinetics and the binding affinity. Recent rapid progress in single-molecule imaging and mechanical manipulation technologies have made it possible to directly probe the DNA binding by proteins, footprint the positions of the bound proteins on DNA, quantify the kinetics and the affinity of protein-DNA interactions, and study the interplay of protein binding with DNA conformation and DNA topology. Here, we review the applications of an integrated approach where the single-DNA imaging using atomic force microscopy and the mechanical manipulation of single DNA molecules are combined to study the DNA-protein interactions. We also provide our views on how these findings yield new insights into understanding the roles of several essential DNA architectural proteins.

19.
J Colloid Interface Sci ; 590: 506-517, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33567375

RESUMO

HYPOTHESIS: Despite the widespread industrial usage of erucamide as a slip additive to modify polymer surface properties, a controversy appears to have persisted regarding the nanostructure of erucamide surface layers, particularly the molecular orientation at the outermost layer. The erucamide nanostructure and molecular orientation, along with its surface coverage, hydrophobicity, and adhesive response, can be tuned by simply varying the erucamide concentration in the solution from which the spin coated layer is prepared. EXPERIMENTS: Synchrotron X-ray reflectivity (XRR) allowed a comprehensive characterisation of the out-of-plane structural parameters (e.g. molecular packing and thickness) of the erucamide layers prepared via spin coating from nonaqueous solution on silica. Complementary Atomic Force Microscopy (AFM) imaging with high lateral resolution revealed localised in-plane structures. Contact angle measurements provided information on the wettability of erucamide-coated surfaces. Peak Force Quantitative Nanomechanical Mapping (QNM) allowed a correlation between the erucamide nanostructure with the surface nanomechanical properties (i.e. adhesive response). FINDINGS: Our results reveal erucamide surface nanostructures on silica as patchy monolayers, isolated circular bilayers/rounded rectangle-like aggregates and overlapping plate-like multilayers as the erucamide concentration in the spin coating solution was varied. In all the cases, XRR and AFM results were consistent with the picture that the erucamide tails were oriented outwards. The QNM adhesion force mapping of all the observed morphologies also supported this molecular orientation at the outermost erucamide monolayer. The wettability study further confirmed this conclusion with the observed increase in the surface hydrophobicity and coverage upon increasing erucamide concentration, with the macroscopic water contact angle θ = 92.9° ± 2.9° at the highest erucamide concentration of 2 wt%.

20.
Bio Protoc ; 11(17): e4139, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604445

RESUMO

Understanding the structure and dynamics of DNA-protein interactions during DNA replication is crucial for elucidating the origins of disorders arising from its dysfunction. In this study, we employed Atomic Force Microscopy as a single-molecule imaging tool to examine the mitochondrial DNA helicase Twinkle and its interactions with DNA. We used imaging in air and time-lapse imaging in liquids to observe the DNA binding and unwinding activities of Twinkle hexamers at the single-molecule level. These procedures helped us visualize Twinkle loading onto and unloading from the DNA in the open-ring conformation. Using traditional methods, it has been shown that Twinkle is capable of unwinding dsDNA up to 20-55 bps. We found that the addition of mitochondrial single-stranded DNA binding protein (mtSSB) facilitates a 5-fold increase in the DNA unwinding rate for the Twinkle helicase. The protocols developed in this study provide new platforms to examine DNA replication and to explore the mechanism driving DNA deletion and human diseases. Graphic abstract: Mitochondrial Twinkle Helicase Dynamics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa