Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Biol ; 456(1): 1-7, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398317

RESUMO

Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.


Assuntos
Padronização Corporal/genética , Oxigenases de Função Mista/metabolismo , Via de Sinalização Wnt/genética , Animais , Padronização Corporal/fisiologia , Análise Mutacional de DNA/métodos , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Metabolismo dos Lipídeos , Lipídeos/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/fisiologia , Éteres Fosfolipídicos/metabolismo , Via de Sinalização Wnt/fisiologia , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
2.
J Infect Dis ; 216(1): 22-28, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586473

RESUMO

Background: Visceral leishmaniasis (kala-azar, KA) is the most severe form of leishmaniasis, characterized by fever, weight loss, hepatosplenomegaly, and lymphadenopathy. During an outbreak of KA in Babar El Fugara (Sudan), 5.7% of cured patients displayed relapses, with familial clustering in half the cases. Methods: We performed whole-exome sequencing on 10 relapsing individuals and 11 controls from 5 nuclear families. Results: Rare homozygous and compound-heterozygous nonsense (c.1213C > T, rs139309795, p.Arg405*) and missense (c.701A > G, rs143439626, p.Lys234Arg) mutations of the alkylglycerol monooxygenase (AGMO) gene were associated with KA relapse in 3 families. Sequencing in additional family members confirmed the segregation of these mutations with relapse and revealed an autosomal dominant mode of transmission. These mutations were detected heterozygous in 2 subjects among 100 unrelated individuals with KA who never relapsed after cure, suggesting incomplete penetrance of AGMO deficiency. AGMO is expressed in hematopoietic cells, and is strongly expressed in the liver. AGMO modulates PAF production by mouse macrophages, suggesting that it may act through the PAF/PAF receptor pathway previously shown to have anti-Leishmania activity. Conclusions: This is the first demonstration that relapses after a first episode of KA are due to differences in human genetic susceptibility and not to modifications of parasite pathogenicity.


Assuntos
Exoma , Leishmaniose Visceral/genética , Oxigenases de Função Mista/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Estudos Longitudinais , Masculino , Mutação , Recidiva , Reprodutibilidade dos Testes , Sudão
3.
Med Hypotheses ; 163: 110842, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35431403

RESUMO

The treatment of post-acute sequelae of Covid-19 (PASC) has been informed primarily by symptomatic parallels with other chronic inflammatory syndromes. This manuscript takes a more systemic approach by examining how a marginal deficiency of tetrahydrobiopterin (BH4) resulting from mutations of the GCH1 (GTP cyclohydrolase 1) gene may result in the uncoupling of inducible Nitric Oxide Synthase (iNOS) early in the initial response of the innate immune system to SARS-CoV-2. The resulting production of superoxide instead of nitric oxide leads to a self-perpetuating cycle of oxidative stress with the potential to impair numerous metabolic processes and damage multiple organ systems. This marginal deficiency of BH4 may be exhibited by 30% or more of the patient population that have heterozygous or homozygous mutations of GCH1. As the cycle of oxidative stress continues, there is less BH4 available for other metabolic needs such as 1) resisting increased ferroptosis with its damage to organs, and 2) regulating the deactivation of the hyperinflammatory state. Finally, possible steps are proposed for clinical treatment of the hypothesized oxidative stress involved with PASC.

4.
Life (Basel) ; 11(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530536

RESUMO

The gene encoding alkylglycerol monooxygenase (AGMO) was assigned 10 years ago. So far, AGMO is the only known enzyme capable of catalysing the breakdown of alkylglycerols and lyso-alkylglycerophospholipids. With the knowledge of the genetic information, it was possible to relate a potential contribution for mutations in the AGMO locus to human diseases by genome-wide association studies. A possible role for AGMO was implicated by genetic analyses in a variety of human pathologies such as type 2 diabetes, neurodevelopmental disorders, cancer, and immune defence. Deficient catabolism of stored lipids carrying an alkyl bond by an absence of AGMO was shown to impact on the overall lipid composition also outside the ether lipid pool. This review focuses on the current evidence of AGMO in human diseases and summarises experimental evidence for its role in immunity, energy homeostasis, and development in humans and several model organisms. With the progress in lipidomics platform and genetic identification of enzymes involved in ether lipid metabolism such as AGMO, it is now possible to study the consequence of gene ablation on the global lipid pool and further on certain signalling cascades in a variety of model organisms in more detail.

5.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062826

RESUMO

Alkylglycerol monooxygenase (AGMO) is a tetrahydrobiopterin (BH4)-dependent enzyme with major expression in the liver and white adipose tissue that cleaves alkyl ether glycerolipids. The present study describes the disclosure and biological characterization of a candidate compound (Cp6), which inhibits AGMO with an IC50 of 30-100 µM and 5-20-fold preference of AGMO relative to other BH4-dependent enzymes, i.e., phenylalanine-hydroxylase and nitric oxide synthase. The viability and metabolic activity of mouse 3T3-L1 fibroblasts, HepG2 human hepatocytes and mouse RAW264.7 macrophages were not affected up to 10-fold of the IC50. However, Cp6 reversibly inhibited the differentiation of 3T3-L1 cells towards adipocytes, in which AGMO expression was upregulated upon differentiation. Cp6 reduced the accumulation of lipid droplets in adipocytes upon differentiation and in HepG2 cells exposed to free fatty acids. Cp6 also inhibited IL-4-driven differentiation of RAW264.7 macrophages towards M2-like macrophages, which serve as adipocyte progenitors in adipose tissue. Collectively, the data suggest that pharmacologic AGMO inhibition may affect lipid storage.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Fibroblastos/metabolismo , Células Hep G2 , Humanos , Concentração Inibidora 50 , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
6.
Int J Biochem Cell Biol ; 127: 105834, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827762

RESUMO

Identifying co-expression of lipid species is challenging, but indispensable to identify novel therapeutic targets for breast cancer treatment. Lipid metabolism is often dysregulated in cancer cells, and changes in lipid metabolism affect cellular processes such as proliferation, autophagy, and tumor development. In addition to mRNA analysis of sphingolipid metabolizing enzymes, we performed liquid chromatography time-of-flight mass spectrometry analysis in three breast cancer cell lines. These breast cancer cell lines differ in estrogen receptor and G-protein coupled estrogen receptor 1 status. Our data show that sphingolipids and non-sphingolipids are strongly increased in SKBr3 cells. SKBr3 cells are estrogen receptor negative and G-protein coupled estrogen receptor 1 positive. Treatment with G15, a G-protein coupled estrogen receptor 1 antagonist, abolishes the effect of increased sphingolipid and non-sphingolipid levels in SKBr3 cells. In particular, ether lipids are expressed at much higher levels in cancer compared to normal cells and are strongly increased in SKBr3 cells. Our analysis reveals that this is accompanied by increased sphingolipid levels such as ceramide, sphingadiene-ceramide and sphingomyelin. This shows the importance of focusing on more than one lipid class when investigating molecular mechanisms in breast cancer cells. Our analysis allows unbiased screening for different lipid classes leading to identification of co-expression patterns of lipids in the context of breast cancer. Co-expression of different lipid classes could influence tumorigenic potential of breast cancer cells. Identification of co-regulated lipid species is important to achieve improved breast cancer treatment outcome.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Lipidômica/métodos , Lipídeos/biossíntese , Éteres Fosfolipídicos/metabolismo , Esfingolipídeos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ceramidas/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Chem Phys Lipids ; 222: 51-58, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102583

RESUMO

Lipodisq™ nanoparticles have been used to extract surface lipids from the cuticle of two strains (wild type, N2 and the bacteria-resistant strain, agmo-1) of the C. elegans nematode without loss of viability. The extracted lipids were characterized by thin layer chromatography and MALDI-TOF-MS. The lipid profiles differed between the two strains. The extracted lipids from the bacteria-resistant strain, agmo-1, contained ether-linked (O-alkyl chain) lipids, in contrast to the wild-type strain which contained exclusively ester- linked (O-acyl) lipids. This observation is consistent with the loss of a functional alkylglycerol monooxygenase (AGMO) in the bacterial resistant strain agmo-1. The presence and abundance of other lipid species also differs between the wild-type N2 and agmo-1 nematodes, suggesting that the agmo-1 mutant strain attempts to compensate for the increase in ether-linked lipids by modulating other lipid-synthesis pathways. Together these differences not only affect the fragility of the cuticle and the buoyancy of the worm in aqueous buffer, but also interactions with surface-adhering bacteria. The much greater chemical stability of O-alkyl, non-hydrolysable linked lipids compared with hydrolysable O-acyl linked lipids, may be the origin of the resistance of the agmo-1 strain to bacterial infection, providing a more resilient cuticle for the nematode. Additionally, we show that lipid extraction with a polymer of styrene and maleic acid (SMA) provides a viable route to lipidomics studies with minimal perturbation of the organism.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/metabolismo , Eucariotos/metabolismo , Lipidômica , Lipídeos/química , Animais
8.
Materials (Basel) ; 11(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747440

RESUMO

Silver-coated molybdenum is an optimum material selection to replace pure silver as solar cell interconnector. However, the low adhesive strength between Ag films and Mo substrate hinders the application of the interconnector, because it is difficult to form metallurgical bonding or compound in the film/substrate interface using conventional deposition. In order to improve the adhesion, some Ag particles were implanted into the surface of Mo substrate by ion beam-assisted deposition (IBAD) before the Ag films were deposited by magnetron sputtering deposition (MD). The objective of this work was to investigate the effect of different assisted ion beam energy on the film/substrate adhesive properties. In addition, the fundamental adhesion mechanism was illustrated. The results revealed that the adhesion between Ag films and Mo substrate could be greatly enhanced by IBAD. With the increase of the assisting ion beam energy, the adhesive strength first increased and then decreased, with the optimum adhesion being able to rise to 25.29 MPa when the energy of the assisting ion beam was 30 keV. It could be inferred that the combination of “intermixing layer” and “implanted layer” formed by the high-energy ion bombardment was the key to enhancing the adhesion between Ag films and Mo substrate effectively.

9.
J Crohns Colitis ; 10(8): 965-78, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26928964

RESUMO

BACKGROUND AND AIMS: Guanosine triphosphate cyclohydrolase [GCH1] governs the production of the enzyme cofactor tetrahydrobiopterin [BH4] which is essential for biogenic amine synthesis, lipid metabolism via alkylglycerol monooxygenase [AGMO], and redox coupling of nitric oxide synthases [NOSs]. Inflammation-evoked unequal regulation of GCH1 and NOS or AGMO may cause redox stress and lipid imbalances. METHODS: The present study assessed potential therapeutic effects of rebalancing these systems with BH4 in experimental colitis in mice. RESULTS: Oral treatment with BH4 as a suspension of crushed tablets attenuated colitis, whereas inhibition of its production had opposite effects: aggravated weight loss, epithelial haemorrhages and ulcers, neutrophil infiltrates, production of reactive oxygen species, and unfavourable profile changes of endocannabinoids, ceramides, and lysophosphatidic acids. Conversely, oral BH4 normalised biopterin, reduced in vivo activity of oxidases and peroxidases in the inflamed gut, favoured nitric oxide over hydrogen peroxide, and maintained normal levels of lipid signalling molecules. BH4 favoured thereby resident CD3+CD8+ and regulatory CD3+CD25+ intraepithelial T cells that are important for epithelial integrity. CONCLUSIONS: BH4 protected against colitis in mice via two major pathways: [i] by reduction of oxidative stress; and [ii] by re-orchestration of alkyl- and acylglycerolipid signalling via AGMO. Oral treatment with BH4 is a safe approved supplementary therapy for genetic BH4 deficiency and did not excessively increase systemic BH4 levels. Therefore, one may consider repurposing of oral BH4 as an adjunctive treatment for colitis.


Assuntos
Biopterinas/análogos & derivados , Colite/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Biomarcadores/metabolismo , Biopterinas/farmacologia , Biopterinas/uso terapêutico , Western Blotting , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Citometria de Fluxo , Imunofluorescência , Fármacos Gastrointestinais/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Resultado do Tratamento
10.
Genetics ; 200(1): 237-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808955

RESUMO

Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.


Assuntos
Aminas Biogênicas/biossíntese , Biopterinas/análogos & derivados , Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Animais , Biopterinas/genética , Biopterinas/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa