Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.263
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729112

RESUMO

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Assuntos
Drosophila melanogaster , Microscopia Eletrônica , Neurotransmissores , Sinapses , Animais , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Microscopia Eletrônica/métodos , Redes Neurais de Computação , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismo
2.
Cell ; 185(26): 5040-5058.e19, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563667

RESUMO

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.


Assuntos
Doença de Alzheimer , Proteoma , Camundongos , Humanos , Animais , Proteoma/análise , Proteômica/métodos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Espectrometria de Massas , Placa Amiloide
3.
Cell ; 181(6): 1423-1433.e11, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32416069

RESUMO

Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.


Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X , COVID-19 , China , Estudos de Coortes , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Conjuntos de Dados como Assunto , Humanos , Pulmão/patologia , Modelos Biológicos , Pandemias , Projetos Piloto , Pneumonia Viral/patologia , Pneumonia Viral/terapia , Prognóstico , Radiologistas , Insuficiência Respiratória/diagnóstico
4.
Cell ; 181(2): 236-249, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Atlas como Assunto , Transformação Celular Neoplásica/patologia , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Análise de Célula Única/métodos
5.
Mol Cell ; 83(22): 3953-3971, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37802077

RESUMO

tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , RNA de Transferência/metabolismo , Anticódon , Aminoacil-tRNA Sintetases/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética
6.
Trends Biochem Sci ; 48(4): 345-359, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36504138

RESUMO

Breakthrough methods in machine learning (ML), protein structure prediction, and novel ultrafast structural aligners are revolutionizing structural biology. Obtaining accurate models of proteins and annotating their functions on a large scale is no longer limited by time and resources. The most recent method to be top ranked by the Critical Assessment of Structure Prediction (CASP) assessment, AlphaFold 2 (AF2), is capable of building structural models with an accuracy comparable to that of experimental structures. Annotations of 3D models are keeping pace with the deposition of the structures due to advancements in protein language models (pLMs) and structural aligners that help validate these transferred annotations. In this review we describe how recent developments in ML for protein science are making large-scale structural bioinformatics available to the general scientific community.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/química , Biologia Computacional/métodos , Conformação Proteica
7.
Annu Rev Pharmacol Toxicol ; 64: 231-253, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37524384

RESUMO

Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Paclitaxel , Alelos , Combinação de Medicamentos
8.
Annu Rev Pharmacol Toxicol ; 64: 527-550, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738505

RESUMO

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.


Assuntos
Inteligência Artificial , Médicos , Animais , Humanos , Reprodutibilidade dos Testes , Descoberta de Drogas , Tecnologia
9.
Proc Natl Acad Sci U S A ; 121(2): e2304406120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181057

RESUMO

Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear-for example, Integrated Gradients and Shapley Additive Explanations (SHAP)-can provably fail to improve on random guessing for inferring model behavior. Our results apply to common end-tasks such as characterizing local model behavior, identifying spurious features, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks: Once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.

10.
Proc Natl Acad Sci U S A ; 121(4): e2309535121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227650

RESUMO

The notion of common sense is invoked so frequently in contexts as diverse as everyday conversation, political debates, and evaluations of artificial intelligence that its meaning might be surmised to be unproblematic. Surprisingly, however, neither the intrinsic properties of common sense knowledge (what makes a claim commonsensical) nor the degree to which it is shared by people (its "commonness") have been characterized empirically. In this paper, we introduce an analytical framework for quantifying both these elements of common sense. First, we define the commonsensicality of individual claims and people in terms of the latter's propensity to agree on the former and their awareness of one another's agreement. Second, we formalize the commonness of common sense as a clique detection problem on a bipartite belief graph of people and claims, defining [Formula: see text] common sense as the fraction [Formula: see text] of claims shared by a fraction [Formula: see text] of people. Evaluating our framework on a dataset of [Formula: see text] raters evaluating [Formula: see text] diverse claims, we find that commonsensicality aligns most closely with plainly worded, fact-like statements about everyday physical reality. Psychometric attributes such as social perceptiveness influence individual common sense, but surprisingly demographic factors such as age or gender do not. Finally, we find that collective common sense is rare: At most, a small fraction [Formula: see text] of people agree on more than a small fraction [Formula: see text] of claims. Together, these results undercut universalistic beliefs about common sense and raise questions about its variability that are relevant both to human and artificial intelligence.


Assuntos
Inteligência Artificial , Conhecimento , Humanos , Psicometria
11.
Proc Natl Acad Sci U S A ; 121(9): e2310012121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377194

RESUMO

Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.


Assuntos
Aprendizado Profundo , Doenças do Sistema Nervoso , Adulto Jovem , Humanos , Masculino , Feminino , Caracteres Sexuais , Encéfalo , Envelhecimento
12.
Proc Natl Acad Sci U S A ; 121(27): e2311888121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913887

RESUMO

The prediction of protein 3D structure from amino acid sequence is a computational grand challenge in biophysics and plays a key role in robust protein structure prediction algorithms, from drug discovery to genome interpretation. The advent of AI models, such as AlphaFold, is revolutionizing applications that depend on robust protein structure prediction algorithms. To maximize the impact, and ease the usability, of these AI tools we introduce APACE, AlphaFold2 and advanced computing as a service, a computational framework that effectively handles this AI model and its TB-size database to conduct accelerated protein structure prediction analyses in modern supercomputing environments. We deployed APACE in the Delta and Polaris supercomputers and quantified its performance for accurate protein structure predictions using four exemplar proteins: 6AWO, 6OAN, 7MEZ, and 6D6U. Using up to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations, reducing time-to-solution from weeks to minutes. This computational approach may be readily linked with robotics laboratories to automate and accelerate scientific discovery.


Assuntos
Algoritmos , Biofísica , Proteínas , Proteínas/química , Biofísica/métodos , Conformação Proteica , Software , Biologia Computacional/métodos , Modelos Moleculares
13.
Proc Natl Acad Sci U S A ; 121(24): e2317967121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833474

RESUMO

Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Thus, aligning them with human values is of great importance. However, given the steady increase in reasoning abilities, future LLMs are under suspicion of becoming able to deceive human operators and utilizing this ability to bypass monitoring efforts. As a prerequisite to this, LLMs need to possess a conceptual understanding of deception strategies. This study reveals that such strategies emerged in state-of-the-art LLMs, but were nonexistent in earlier LLMs. We conduct a series of experiments showing that state-of-the-art LLMs are able to understand and induce false beliefs in other agents, that their performance in complex deception scenarios can be amplified utilizing chain-of-thought reasoning, and that eliciting Machiavellianism in LLMs can trigger misaligned deceptive behavior. GPT-4, for instance, exhibits deceptive behavior in simple test scenarios 99.16% of the time (P < 0.001). In complex second-order deception test scenarios where the aim is to mislead someone who expects to be deceived, GPT-4 resorts to deceptive behavior 71.46% of the time (P < 0.001) when augmented with chain-of-thought reasoning. In sum, revealing hitherto unknown machine behavior in LLMs, our study contributes to the nascent field of machine psychology.


Assuntos
Enganação , Idioma , Humanos , Inteligência Artificial
14.
Proc Natl Acad Sci U S A ; 121(17): e2318362121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630718

RESUMO

Design of hardware based on biological principles of neuronal computation and plasticity in the brain is a leading approach to realizing energy- and sample-efficient AI and learning machines. An important factor in selection of the hardware building blocks is the identification of candidate materials with physical properties suitable to emulate the large dynamic ranges and varied timescales of neuronal signaling. Previous work has shown that the all-or-none spiking behavior of neurons can be mimicked by threshold switches utilizing material phase transitions. Here, we demonstrate that devices based on a prototypical metal-insulator-transition material, vanadium dioxide (VO2), can be dynamically controlled to access a continuum of intermediate resistance states. Furthermore, the timescale of their intrinsic relaxation can be configured to match a range of biologically relevant timescales from milliseconds to seconds. We exploit these device properties to emulate three aspects of neuronal analog computation: fast (~1 ms) spiking in a neuronal soma compartment, slow (~100 ms) spiking in a dendritic compartment, and ultraslow (~1 s) biochemical signaling involved in temporal credit assignment for a recently discovered biological mechanism of one-shot learning. Simulations show that an artificial neural network using properties of VO2 devices to control an agent navigating a spatial environment can learn an efficient path to a reward in up to fourfold fewer trials than standard methods. The phase relaxations described in our study may be engineered in a variety of materials and can be controlled by thermal, electrical, or optical stimuli, suggesting further opportunities to emulate biological learning in neuromorphic hardware.


Assuntos
Aprendizagem , Redes Neurais de Computação , Computadores , Encéfalo/fisiologia , Neurônios/fisiologia
15.
Proc Natl Acad Sci U S A ; 121(24): e2403116121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38848300

RESUMO

Recent advancements in large language models (LLMs) have raised the prospect of scalable, automated, and fine-grained political microtargeting on a scale previously unseen; however, the persuasive influence of microtargeting with LLMs remains unclear. Here, we build a custom web application capable of integrating self-reported demographic and political data into GPT-4 prompts in real-time, facilitating the live creation of unique messages tailored to persuade individual users on four political issues. We then deploy this application in a preregistered randomized control experiment (n = 8,587) to investigate the extent to which access to individual-level data increases the persuasive influence of GPT-4. Our approach yields two key findings. First, messages generated by GPT-4 were broadly persuasive, in some cases increasing support for an issue stance by up to 12 percentage points. Second, in aggregate, the persuasive impact of microtargeted messages was not statistically different from that of non-microtargeted messages (4.83 vs. 6.20 percentage points, respectively, P = 0.226). These trends hold even when manipulating the type and number of attributes used to tailor the message. These findings suggest-contrary to widespread speculation-that the influence of current LLMs may reside not in their ability to tailor messages to individuals but rather in the persuasiveness of their generic, nontargeted messages. We release our experimental dataset, GPTarget2024, as an empirical baseline for future research.


Assuntos
Comunicação Persuasiva , Política , Humanos , Idioma
16.
Proc Natl Acad Sci U S A ; 121(27): e2311808121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913886

RESUMO

Modeling complex physical dynamics is a fundamental task in science and engineering. Traditional physics-based models are first-principled, explainable, and sample-efficient. However, they often rely on strong modeling assumptions and expensive numerical integration, requiring significant computational resources and domain expertise. While deep learning (DL) provides efficient alternatives for modeling complex dynamics, they require a large amount of labeled training data. Furthermore, its predictions may disobey the governing physical laws and are difficult to interpret. Physics-guided DL aims to integrate first-principled physical knowledge into data-driven methods. It has the best of both worlds and is well equipped to better solve scientific problems. Recently, this field has gained great progress and has drawn considerable interest across discipline Here, we introduce the framework of physics-guided DL with a special emphasis on learning dynamical systems. We describe the learning pipeline and categorize state-of-the-art methods under this framework. We also offer our perspectives on the open challenges and emerging opportunities.

17.
Proc Natl Acad Sci U S A ; 121(24): e2318124121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830100

RESUMO

There is much excitement about the opportunity to harness the power of large language models (LLMs) when building problem-solving assistants. However, the standard methodology of evaluating LLMs relies on static pairs of inputs and outputs; this is insufficient for making an informed decision about which LLMs are best to use in an interactive setting, and how that varies by setting. Static assessment therefore limits how we understand language model capabilities. We introduce CheckMate, an adaptable prototype platform for humans to interact with and evaluate LLMs. We conduct a study with CheckMate to evaluate three language models (InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics, with a mixed cohort of participants from undergraduate students to professors of mathematics. We release the resulting interaction and rating dataset, MathConverse. By analyzing MathConverse, we derive a taxonomy of human query behaviors and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness in LLM generations, among other findings. Further, we garner a more granular understanding of GPT-4 mathematical problem-solving through a series of case studies, contributed by experienced mathematicians. We conclude with actionable takeaways for ML practitioners and mathematicians: models that communicate uncertainty, respond well to user corrections, and can provide a concise rationale for their recommendations, may constitute better assistants. Humans should inspect LLM output carefully given their current shortcomings and potential for surprising fallibility.


Assuntos
Idioma , Matemática , Resolução de Problemas , Humanos , Resolução de Problemas/fisiologia , Estudantes/psicologia
18.
Proc Natl Acad Sci U S A ; 121(10): e2316031121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412132

RESUMO

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.


Assuntos
Biodiversidade , Ecossistema , Clima , Florestas , Carbono , Leveduras
19.
Proc Natl Acad Sci U S A ; 121(12): e2320232121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478684

RESUMO

The chemisorption energy of reactants on a catalyst surface, [Formula: see text], is among the most informative characteristics of understanding and pinpointing the optimal catalyst. The intrinsic complexity of catalyst surfaces and chemisorption reactions presents significant difficulties in identifying the pivotal physical quantities determining [Formula: see text]. In response to this, the study proposes a methodology, the feature deletion experiment, based on Automatic Machine Learning (AutoML) for knowledge extraction from a high-throughput density functional theory (DFT) database. The study reveals that, for binary alloy surfaces, the local adsorption site geometric information is the primary physical quantity determining [Formula: see text], compared to the electronic and physiochemical properties of the catalyst alloys. By integrating the feature deletion experiment with instance-wise variable selection (INVASE), a neural network-based explainable AI (XAI) tool, we established the best-performing feature set containing 21 intrinsic, non-DFT computed properties, achieving an MAE of 0.23 eV across a periodic table-wide chemical space involving more than 1,600 types of alloys surfaces and 8,400 chemisorption reactions. This study demonstrates the stability, consistency, and potential of AutoML-based feature deletion experiment in developing concise, predictive, and theoretically meaningful models for complex chemical problems with minimal human intervention.

20.
Proc Natl Acad Sci U S A ; 121(14): e2319112121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551835

RESUMO

People want to "feel heard" to perceive that they are understood, validated, and valued. Can AI serve the deeply human function of making others feel heard? Our research addresses two fundamental issues: Can AI generate responses that make human recipients feel heard, and how do human recipients react when they believe the response comes from AI? We conducted an experiment and a follow-up study to disentangle the effects of actual source of a message and the presumed source. We found that AI-generated messages made recipients feel more heard than human-generated messages and that AI was better at detecting emotions. However, recipients felt less heard when they realized that a message came from AI (vs. human). Finally, in a follow-up study where the responses were rated by third-party raters, we found that compared with humans, AI demonstrated superior discipline in offering emotional support, a crucial element in making individuals feel heard, while avoiding excessive practical suggestions, which may be less effective in achieving this goal. Our research underscores the potential and limitations of AI in meeting human psychological needs. These findings suggest that while AI demonstrates enhanced capabilities to provide emotional support, the devaluation of AI responses poses a key challenge for effectively leveraging AI's capabilities.


Assuntos
Emoções , Motivação , Humanos , Seguimentos , Emoções/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa