Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
EMBO Rep ; 25(3): 1233-1255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413732

RESUMO

Accumulation of amyloid-beta (Aß) can lead to the formation of aggregates that contribute to neurodegeneration in Alzheimer's disease (AD). Despite globally reduced neural activity during AD onset, recent studies have suggested that Aß induces hyperexcitability and seizure-like activity during the early stages of the disease that ultimately exacerbate cognitive decline. However, the underlying mechanism is unknown. Here, we reveal an Aß-induced elevation of postsynaptic density protein 95 (PSD-95) in cultured neurons in vitro and in an in vivo AD model using APP/PS1 mice at 8 weeks of age. Elevation of PSD-95 occurs as a result of reduced ubiquitination caused by Akt-dependent phosphorylation of E3 ubiquitin ligase murine-double-minute 2 (Mdm2). The elevation of PSD-95 is consistent with the facilitation of excitatory synapses and the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induced by Aß. Inhibition of PSD-95 corrects these Aß-induced synaptic defects and reduces seizure activity in APP/PS1 mice. Our results demonstrate a mechanism underlying elevated seizure activity during early-stage Aß pathology and suggest that PSD-95 could be an early biomarker and novel therapeutic target for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/patologia , Receptores de AMPA/metabolismo , Convulsões
2.
Proc Natl Acad Sci U S A ; 120(22): e2300773120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216537

RESUMO

δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene has been found in autism spectrum disorder (ASD) patients and results in loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we identify that the G34S mutation increases glycogen synthase kinase 3ß (GSK3ß)-dependent δ-catenin degradation to reduce δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, pharmacological inhibition of GSK3ß activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3ß inhibition-induced restoration of normal social behavior in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3ß inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , delta Catenina , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Knockout , Comportamento Social , Sinapses/metabolismo
3.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38238075

RESUMO

Protein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in Caenorhabditis elegans and found a differential role for pkc-2 and tpa-1, but not pkc-1 and pkc-3 in associative olfactory learning and memory. More specifically we show that PKC-2 is essential for associative learning and TPA-1 for short-term associative memory (STAM). Using endogenous labeling and cell-specific rescues, we show that TPA-1 and PKC-2 are required in AVA for their functions. Previous studies demonstrated that olfactory learning and memory in C. elegans are tied to proper synaptic content and trafficking of AMPA-type ionotropic glutamate receptor homolog GLR-1 in the AVA command interneurons. Therefore, we quantified synaptic content, transport, and delivery of GLR-1 in AVA and showed that loss of pkc-2 and tpa-1 leads to decreased transport and delivery but only a subtle decrease in GLR-1 levels at synapses. AVA-specific expression of both PKC-2 and TPA-1 rescued these defects. Finally, genetic epistasis showed that PKC-2 and TPA-1 likely act in the same pathway to control GLR-1 transport and delivery, while regulating different aspects of olfactory learning and STAM. Thus, our data tie together cell-specific functions of 2 PKCs to neuronal and behavioral outcomes in C. elegans, enabling comparative approaches to understand the evolutionarily conserved role of PKC in synaptic plasticity, learning, and memory.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Aprendizagem , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo
4.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858079

RESUMO

Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.


Assuntos
Espinhas Dendríticas , Demência Frontotemporal , Mutação , Isoformas de Proteínas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Ratos , Masculino , Humanos , Feminino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Ratos Sprague-Dawley , Hipocampo/metabolismo , Hipocampo/patologia , Células Cultivadas
5.
J Biol Chem ; 300(5): 107237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552740

RESUMO

Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates of the microtubule-associated protein tau, a main component of neurofibrillary tangles. Alzheimer's disease (AD) is the most common type of tauopathy and dementia, with amyloid-beta pathology as an additional hallmark feature of the disease. Besides its role in stabilizing microtubules, tau is localized at postsynaptic sites and can regulate synaptic plasticity. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that plays a key role in synaptic plasticity, learning, and memory. Arc has been implicated in AD pathogenesis and regulates the release of amyloid-beta. We found that decreased Arc levels correlate with AD status and disease severity. Importantly, Arc protein was upregulated in the hippocampus of Tau KO mice and dendrites of Tau KO primary hippocampal neurons. Overexpression of tau decreased Arc stability in an activity-dependent manner, exclusively in neuronal dendrites, which was coupled to an increase in the expression of dendritic and somatic surface GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. The tau-dependent decrease in Arc was found to be proteasome-sensitive, yet independent of Arc ubiquitination and required the endophilin-binding domain of Arc. Importantly, these effects on Arc stability and GluA1 localization were not observed in the commonly studied tau mutant, P301L. These observations provide a potential molecular basis for synaptic dysfunction mediated through the accumulation of tau in dendrites. Our findings confirm that Arc is misregulated in AD and further show a physiological role for tau in regulating Arc stability and AMPA receptor targeting.


Assuntos
Proteínas do Citoesqueleto , Dendritos , Proteínas do Tecido Nervoso , Complexo de Endopeptidases do Proteassoma , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Dendritos/metabolismo , Dendritos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas tau/metabolismo , Proteínas tau/genética , Ubiquitina/metabolismo , Ubiquitinação
6.
Annu Rev Neurosci ; 39: 257-76, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145911

RESUMO

Addiction is a disease of altered behavior. Addicts use drugs compulsively and will continue to do so despite negative consequences. Even after prolonged periods of abstinence, addicts are at risk of relapse, particularly when cues evoke memories that are associated with drug use. Rodent models mimic many of the core components of addiction, from the initial drug reinforcement to cue-associated relapse and continued drug intake despite negative consequences. Rodent models have also enabled unprecedented mechanistic insight into addiction, revealing plasticity of glutamatergic synaptic transmission evoked by the strong activation of mesolimbic dopamine-a defining feature of all addictive drugs-as a neural substrate for these drug-adaptive behaviors. Cell type-specific optogenetic manipulations have allowed both identification of the relevant circuits and design of protocols to reverse drug-evoked plasticity and to establish links of causality with drug-adaptive behaviors. The emergence of a circuit model for addiction will open the door for novel therapies, such as deep brain stimulation.


Assuntos
Comportamento Aditivo/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Encéfalo/fisiopatologia , Dopamina/farmacologia , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 733: 150434, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39068818

RESUMO

Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.


Assuntos
Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Neurônios , Receptores de AMPA , Animais , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Neurônios/metabolismo , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Células Cultivadas , Potenciais de Ação , Ratos
8.
Arch Biochem Biophys ; 754: 109951, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452968

RESUMO

Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and slower restoration of [Ca2+]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+]i decrease was higher. We have shown the significant inverse correlation between [K+]i and [Ca2+]i and between intracellular pH and [Na+]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.


Assuntos
Cálcio , Receptores de AMPA , Receptores de AMPA/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Homeostase
9.
Cereb Cortex ; 33(8): 4645-4653, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137566

RESUMO

Postnatal maturation of the motor cortex is vital to developing a variety of functions, including the capacity for motor learning. The first postnatal weeks involve many neuronal and synaptic changes, which differ by region and layer, likely due to different functions and needs during development. Motor cortex layer II/III is critical to receiving and integrating inputs from somatosensory cortex and generating attentional signals that are important in motor learning and planning. Here, we examined the neuronal and synaptic changes occurring in layer II/III pyramidal neurons of the mouse motor cortex from the neonatal (postnatal day 10) to young adult (postnatal day 30) period, using a combination of electrophysiology and biochemical measures of glutamatergic receptor subunits. There are several changes between p10 and p30 in these neurons, including increased dendritic branching, neuronal excitability, glutamatergic synapse number and synaptic transmission. These changes are critical to ongoing plasticity and capacity for motor learning during development. Understanding these changes will help inform future studies examining the impact of early-life injury and experiences on motor learning and development capacity.


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Transmissão Sináptica , Sinapses/fisiologia
10.
Cell Mol Life Sci ; 80(4): 90, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922433

RESUMO

Patients with liver cirrhosis show hyperammonemia and peripheral inflammation and may show hepatic encephalopathy with cognitive impairment, reproduced by rats with chronic hyperammonemia. Peripheral inflammation induces neuroinflammation in hippocampus of hyperammonemic rats, altering neurotransmission and leading to cognitive impairment. Extracellular vesicles (EVs) may transmit pathological effects from the periphery to the brain. We hypothesized that EVs from peripheral blood would contribute to cognitive alterations in hyperammonemic rats. The aims were to assess whether EVs from plasma of hyperammonemic rats (HA-EVs) induce cognitive impairment and to identify the underlying mechanisms. Injection of HA-EVs impaired learning and memory, induced microglia and astrocytes activation and increased TNFα and IL-1ß. Ex vivo incubation of hippocampal slices from control rats with HA-EVs reproduced these alterations. HA-EVs increased membrane expression of TNFR1, reduced membrane expression of TGFßR2 and Smad7 and IκBα levels and increased IκBα phosphorylation. This led to increased activation of NF-κB and IL-1ß production, altering membrane expression of NR2B, GluA1 and GluA2 subunits, which would be responsible for cognitive impairment. All these effects of HA-EVs were prevented by blocking TNFα, indicating that they were mediated by enhanced activation of TNFR1 by TNFα. We show that these mechanisms are very different from those leading to motor incoordination, which is due to altered GABAergic neurotransmission in cerebellum. This demonstrates that peripheral EVs play a key role in the transmission of peripheral alterations to the brain in hyperammonemia and hepatic encephalopathy, inducing neuroinflammation and altering neurotransmission in hippocampus, which in turn is responsible for the cognitive deficits.


Assuntos
Vesículas Extracelulares , Encefalopatia Hepática , Hiperamonemia , Ratos , Animais , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Doenças Neuroinflamatórias , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Inflamação/metabolismo , Cognição , Vesículas Extracelulares/metabolismo , Hipocampo/metabolismo
11.
Mol Cell Neurosci ; 125: 103856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105372

RESUMO

In the central nervous system, glutamatergic synapses play a central role in the regulation of excitatory neuronal transmission. With the membrane-associated guanylate kinase (MAGUK) family of proteins as their structuring scaffold, glutamatergic receptors serve as the powerhouse of glutamatergic synapses. Glutamatergic receptors can be categorized as metabotropic and ionotropic receptors. The latter are then categorized into N-methyl-d-aspartate, kainate receptors, and α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid receptors (AMPARs). Over the past two decades, genetic tagging technology and super-resolution microscopy have been of the utmost importance to unravel how the different receptors are organized at glutamatergic synapses. At the plasma membrane, receptors are highly mobile but show reduced mobility when at synaptic sites. This partial immobilization of receptors at synaptic sites is attributed to the stabilization/anchoring of receptors with the postsynaptic MAGUK proteins and auxiliary proteins, and presynaptic proteins. These partial immobilizations and localization of glutamatergic receptors within the synaptic sites are fundamental for proper basal transmission and synaptic plasticity. Perturbations of the stabilization of glutamatergic receptors are often associated with cognitive deficits. In this review, we describe the proposed mechanisms for synaptic localization and stabilization of AMPARs, the major players of fast excitatory transmission in the central nervous system.


Assuntos
Receptores de AMPA , Sinapses , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Guanilato Quinases/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244435

RESUMO

This study presents evidence that the MAGUK family of synaptic scaffolding proteins plays an essential, but redundant, role in long-term potentiation (LTP). The action of PSD-95, but not that of SAP102, requires the binding to the transsynaptic adhesion protein ADAM22, which is required for nanocolumn stabilization. Based on these and previous results, we propose a two-step process in the recruitment of AMPARs during LTP. First, AMPARs, via TARPs, bind to exposed PSD-95 in the PSD. This alone is not adequate to enhance synaptic transmission. Second, the AMPAR/TARP/PSD-95 complex is stabilized in the nanocolumn by binding to ADAM22. A second, ADAM22-independent pathway is proposed for SAP102.


Assuntos
Guanilato Quinases/metabolismo , Potenciação de Longa Duração/fisiologia , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627404

RESUMO

Long-term potentiation (LTP) has long been considered as an important cellular mechanism for learning and memory. LTP expression involves NMDA receptor-dependent synaptic insertion of AMPA receptors (AMPARs). However, how AMPARs are recruited and anchored at the postsynaptic membrane during LTP remains largely unknown. In this study, using CRISPR/Cas9 to delete the endogenous AMPARs and replace them with the mutant forms in single neurons, we have found that the amino-terminal domain (ATD) of GluA1 is required for LTP maintenance. Moreover, we show that GluA1 ATD directly interacts with the cell adhesion molecule neuroplastin-65 (Np65). Neurons lacking Np65 exhibit severely impaired LTP maintenance, and Np65 deletion prevents GluA1 from rescuing LTP in AMPARs-deleted neurons. Thus, our study reveals an essential role for GluA1/Np65 binding in anchoring AMPARs at the postsynaptic membrane during LTP.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Potenciação de Longa Duração/genética , Glicoproteínas de Membrana/genética , Células Piramidais/metabolismo , Receptores de AMPA/genética , Animais , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Cultura Primária de Células , Domínios Proteicos , Células Piramidais/citologia , Receptores de AMPA/metabolismo , Análise de Célula Única , Sinapses , Proteína Vermelha Fluorescente
14.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891774

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Assuntos
Esclerose Lateral Amiotrófica , Ácido Glutâmico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Ácido Glutâmico/metabolismo , Animais , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Envelhecimento/metabolismo , Receptores de AMPA/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337309

RESUMO

Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.


Assuntos
Anticonvulsivantes , Epilepsia Tipo Ausência , Humanos , Epilepsia Tipo Ausência/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Animais , Convulsões/tratamento farmacológico
16.
J Neurochem ; 164(5): 583-597, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36415923

RESUMO

Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.


Assuntos
Cálcio , Receptores de AMPA , Animais , Receptores de AMPA/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico , Mamíferos/metabolismo
17.
Hippocampus ; 33(8): 948-969, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37016759

RESUMO

A Hebbian form of long-term potentiation (LTP) is believed to be the basis of memory storage at CA3 recurrent synapses. Abnormalities in CA3 intrinsic connectivity have been related to memory deficits in a variety of neurological disorders. Despite the promise of computational modeling for illuminating the pathogenic implication of connectivity changes, common Hebbian-based models with preset structural topologies fall short in this regard. Here, I introduce a structure-independent approach to modeling CA3 network focusing on how LTP shapes CA3 functional connectivity. Network simulations demonstrate that only a small fraction of the active synapses should be potentiated onto engram-bearing cells for reaching CA3 optimal performance, and that this fraction should be actively regulated at the single-cell level to maintain precise control over excitatory inputs to and from overlapping engram cells. In light of these findings, I develop a theory suggesting that synaptic potentiation is regulated through extrinsic and intrinsic cellular mechanisms involving the cholinergic modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The theory posits that the progressive increase of acetylcholine release during learning is commensurate with the rate of AMPA receptor trafficking during LTP development and that this dynamics is intended to conceal AMPA receptor potentiation and thereby to propel LTP progression until a target level of potentiation is attained at a restricted number of the active synapses. Functionally, this form of regulation allows encoding and retrieval dynamics to be dictated at the single-cell level and thereby acts at the cell-population level as a secondary mechanism complementing dentate gyrus-mediated pattern separation or compensating for possible deficiencies. Conversely, when this regulation fails, the strength of AMPA receptors and their variability across synapses change over time and lead to pathological states.


Assuntos
Acetilcolina , Potenciação de Longa Duração , Humanos , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Sinapses/fisiologia
18.
Mol Pain ; 19: 17448069231179011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37227022

RESUMO

Synaptic plasticity such as Long-term potentiation (LTP) is a key mechanism for learning in central synapses including the cortex. There are two least two major forms of LTPs: presynaptic LTP and postsynaptic LTP. For postsynaptic LTP, the potentiation of AMPA receptor-mediated responses through protein phosphorylation is thought to be a key mechanism. Silent synapses have been reported in the hippocampus, but it is thought to be mainly present in the cortex during early development, and may contribute to maturation of the cortical circuit. However, recent several lines of evidence demonstrate that silent synapses may exist in mature synapses of adult cortex, and they can be recruited by LTP-inducing protocols, as well as chemical-induced LTP. In pain-related cortical regions, silent synapses may not only contribute to cortical excitation after peripheral injury, but also the recruitment of new cortical circuits as well. Thus, it is proposed that silent synapses and modification of functional AMPA receptors and NMDA receptors may play important roles in chronic pain, including phantom pain.


Assuntos
Dor Crônica , Giro do Cíngulo , Adulto , Humanos , Potenciação de Longa Duração , Plasticidade Neuronal , Receptores de AMPA , Sinapses
19.
Cell Mol Life Sci ; 79(9): 500, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030306

RESUMO

Alzheimer's disease is characterized by the accumulation in the brain of the amyloid ß (Aß) peptide in the form of senile plaques. According to the amyloid hypothesis, the aggregation process of Aß also generates smaller soluble misfolded oligomers that contribute to disease progression. One of the mechanisms of Aß oligomer cytotoxicity is the aberrant interaction of these species with the phospholipid bilayer of cell membranes, with a consequent increase in cytosolic Ca2+ levels, flowing from the extracellular space, and production of reactive oxygen species (ROS). Here we investigated the relationship between the increase in Ca2+ and ROS levels immediately after the exposure to misfolded protein oligomers, asking whether they are simultaneous or instead one precedes the other. Using Aß42-derived diffusible ligands (ADDLs) and type A HypF-N model oligomers (OAs), we followed the kinetics of ROS production and Ca2+ influx in human neuroblastoma SH-SY5Y cells and rat primary cortical neurons in a variety of conditions. In all cases we found a faster increase of intracellular Ca2+ than ROS levels, and a lag phase in the latter process. A Ca2+-deprived cell medium prevented the increase of intracellular Ca2+ ions and abolished ROS production. By contrast, treatment with antioxidant agents prevented ROS formation, did not prevent the initial Ca2+ flux, but allowed the cells to react to the initial calcium dyshomeostasis, restoring later the normal levels of the ions. These results reveal a mechanism in which the entry of Ca2+ causes the production of ROS in cells challenged by aberrant protein oligomers.


Assuntos
Doença de Alzheimer , Neuroblastoma , Peptídeos beta-Amiloides , Animais , Humanos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio
20.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446169

RESUMO

Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.


Assuntos
Hipocampo , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Bicuculina/farmacologia , Neurônios , Potenciais de Ação , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa