Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257417

RESUMO

In the process of data transmission in mobile ad hoc networks, it is essential to establish optimal routes from source nodes to destination nodes. However, as network density increases, this process is often accompanied by a significant rise in network overhead. To address this issue, the ND-AODV (neighborhood density AODV) protocol has been introduced, which reduces the probability of transmitting control information in high-density node environments to mitigate network overhead. Nevertheless, this may come at the cost of reduced routing accuracy, potentially leading to unnecessary resource wastage in certain scenarios. Furthermore, ND-AODV does not comprehensively consider the location of the receiving nodes, which limits its ability to reduce network overhead effectively. To overcome these limitations, this paper introduces a novel routing approach, known as CND-AODV (common neighborhood density AODV). In comparison to ND-AODV, CND-AODV offers a more comprehensive solution to the challenges posed by high-density network environments. It intelligently processes control information based on the special positioning of the receiving nodes, thereby significantly reducing unnecessary network overhead. Through simulation experiments comparing performance metrics such as throughput, packet delivery rate, and latency, the results clearly indicate that CND-AODV substantially decreases network overhead, enhancing network performance. Compared to ND-AODV, this innovative routing approach exhibits significant advantages. It provides a more efficient and reliable solution for ad hoc networks in high-density environments.

2.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39338646

RESUMO

Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments.

3.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339534

RESUMO

A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data packet transmission. These vehicles communicate amongst themselves and establish connections with roadside units (RSUs). In the dynamic landscape of vehicular communication, disruptions, especially in scenarios involving high-speed vehicles, pose challenges. A notable concern is the emergence of black hole attacks, where a vehicle acts maliciously, obstructing the forwarding of data packets to subsequent vehicles, thereby compromising the secure dissemination of content within the VANET. We present an intelligent cluster-based routing protocol to mitigate these challenges in VANET routing. The system operates through two pivotal phases: first, utilizing an artificial neural network (ANN) model to detect malicious nodes, and second, establishing clusters via enhanced clustering algorithms with appointed cluster heads (CH) for each cluster. Subsequently, an optimal path for data transmission is predicted, aiming to minimize packet transmission delays. Our approach integrates a modified ad hoc on-demand distance vector (AODV) protocol for on-demand route discovery and optimal path selection, enhancing request and reply (RREQ and RREP) protocols. Evaluation of routing performance involves the BHT dataset, leveraging the ANN classifier to compute accuracy, precision, recall, F1 score, and loss. The NS-2.33 simulator facilitates the assessment of end-to-end delay, network throughput, and hop count during the path prediction phase. Remarkably, our methodology achieves 98.97% accuracy in detecting black hole attacks through the ANN classification model, outperforming existing techniques across various network routing parameters.

4.
Sensors (Basel) ; 23(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514720

RESUMO

Traffic systems have been built as a result of recent technological advancements. In application, dependable communication technology is essential to link any system needs. VANET technology is used to communicate data about intelligent traffic lights, which are focused on infrastructure during traffic accidents and mechanisms to reduce traffic congestion. To ensure reliable data transfer in VANET, appropriate routing protocols must be used. This research aims to improve data transmission in VANETs implemented in intelligent traffic lights. This study investigates the capability of combining the DSDV routing protocol with the routing protocol AODV to boost AODV on an OMNET++ simulator utilizing the 802.11p wireless standard. According to the simulation results obtained by analyzing the delay parameters, network QoS, and throughput on each protocol, the DSDV-AODV routing protocol performs better in three scenarios compared to QoS, delay, and throughput parameters in every scenario that uses network topology adapted to the conditions on the road intersections. The topology with 50 fixed + 50 mobile nodes yields the best results, with 0.00062 s delay parameters, a network QoS of 640 bits/s, and a throughput of 629.437 bits/s. Aside from the poor results on the network QoS parameters, the addition of mobile nodes to the topology influences both the results of delay and throughput metrics.

5.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960381

RESUMO

A wireless sensor network (WSN) is a network that monitors the physical environment using small and energy-efficient sensor devices. The wide application of WSNs has caused them to be used in critical applications that require a quick response, even at the cost of higher consumption. In recent years, Fast Reroute (FRR) technology has been developed, which accelerates network recovery after line or node failure. This technology plays an important role in connection recovery and data recovery, which helps speed up detection and redirect traffic. In our work, we created a new modification of the Ad hoc On-Demand Distance Vector (AODV) routing protocol, where we added the fast detection of link failure used in the FRR area. This modification rapidly increased connection recovery time and was tested in the OMNET++ simulation environment. The modification was implemented based on an additional RFC 5880 Bidirectional Forwarding Detection (BFD) module, which speeds up failure detection by sending quick "Hello" messages.

6.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571542

RESUMO

The Ad Hoc On-demand Distance Vector (AODV) is a routing protocol for mobile ad hoc networks (MANETs) and other wireless ad hoc networks. The vanilla AODV protocol is simple and easy to implement because it only uses the hop count as a routing metric. Single-metric route determination also causes problems, such as network congestion and energy exhaustion, which limit the usage of AODV in resource-limited applications. To solve these problems, the authors propose a new routing protocol that combines the analytic hierarchy process (AHP), the entropy weight method (EWM), and AODV. The proposed protocol uses energy, congestion, and the hop count as metrics and weights these three metrics using AHP and EWM. To address the importance of energy in applications, such as drones, the proposed protocol chooses different comparison matrices for AHP at different node residual energy levels. Finally, the node chooses the best route link according to the score (sum of weighted metrics). It is also suitable for wireless sensor networks because the proposed protocol considers the residual energy of the node. The simulation results show that the improved routing protocol can effectively reduce the average end-to-end delay and energy consumption and prolong the lifetime of the whole network.

7.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35271043

RESUMO

Rapid and tremendous advances in wireless technology, miniaturization, and Internet of things (IoT) technology have brought significant development to vehicular ad hoc networks (VANETs). VANETs and IoT together play a vital role in the current intelligent transport system (ITS). However, a VANET is highly vulnerable to various security attacks due to its highly dynamic, decentralized, open-access medium, and protocol-design-related concerns. Regarding security concerns, a black hole attack (BHA) is one such threat in which the control or data packets are dropped by the malicious vehicle, converting a safe path/link into a compromised one. Dropping data packets has a severe impact on a VANET's performance and security and may cause road fatalities, accidents, and traffic jams. In this study, a novel solution called detection and prevention of a BHA (DPBHA) is proposed to secure and improve the overall security and performance of the VANETs by detecting BHA at an early stage of the route discovery process. The proposed solution is based on calculating a dynamic threshold value and generating a forged route request (RREQ) packet. The solution is implemented and evaluated in the NS-2 simulator and its performance and efficacy are compared with the benchmark schemes. The results showed that the proposed DPBHA outperformed the benchmark schemes in terms of increasing the packet delivery ratio (PDR) by 3.0%, increasing throughput by 6.15%, reducing the routing overhead by 3.69%, decreasing the end-to-end delay by 6.13%, and achieving a maximum detection rate of 94.66%.

8.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062432

RESUMO

Fifth-generation and beyond networks target multiple distributed network application such as Internet of Things (IoT), connected robotics, and massive Machine Type Communication (mMTC). In the absence of a central management unit, the device need to search and establish a route towards the destination before initializing data transmission. In this paper, we proposes a destination search and routing method for distributed 5G and beyond networks. In the proposed method, the source node makes multiple attempts to search for a route towards the destination by expanding disk-like patterns originating from the source node. The source node increases the search area in each attempt, accommodating more nodes in the search process. As a result, the probability of finding the destination increases, which reduces energy consumption and time delay of routing. We propose three variants of routing for high, medium, and low-density network scenarios and analyze their performance for various network configurations. The results demonstrate that the performance of the proposed solution is better than previously proposed techniques in terms of time latency and reduced energy consumption, making it applicable for 5G and beyond networks.

9.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502856

RESUMO

Due to the noncentered, self-organizing, and self-healing characteristics, mobile ad hoc networks (MANET) have been more and more widely used as an alternative access technology for regions having no fixed infrastructure. On-demand routing protocols (e.g., ad hoc on-demand distance vector (AODV)) are used to cope with the rapidly changing topology of MANET and reduce the network overhead. Taking delay, stability, and remaining energy of nodes into consideration, a fuzzy-logic-assisted AODV (FL-AODV) routing algorithm is proposed in this paper to further improve the reliability of the route in MANET. In the route discovery phase, the node with the highest reliability is selected as the relay node, and the route with the highest accumulated reliability is reserved for data transmission. Simulation results show that, compared with the traditional AODV protocol and the fuzzy logic routing algorithm (FLRA), the proposed routing protocol has higher reliability without increasing delay, i.e., better link connectivity and longer route life. The average routing reliability is about 18% higher than AODV while the average delay is the same low when the number of node greater than 70.

10.
Sensors (Basel) ; 21(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770367

RESUMO

In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the energy consumption in their nodes. We compare this algorithm with other existing ad hoc routing protocols including LEACH-GA, GA-AODV, AODV, DSR, EPAR, EBAR_BFS. Results prove that our protocol enhances the network performance in terms of packet delivery ratio, throughput, round trip time and energy consumption. GA-AOMDV protocol achieves average gain that is 7 to 22% over other protocols. Therefore, our protocol extends the network lifetime for data communications.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Conservação de Recursos Energéticos , Fenômenos Físicos
11.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35274628

RESUMO

The paper presents a new security aspect for a Mobile Ad-Hoc Network (MANET)-based IoT model using the concept of artificial intelligence. The Black Hole Attack (BHA) is considered one of the most affecting threats in the MANET in which the attacker node drops the entire data traffic and hence degrades the network performance. Therefore, it necessitates the designing of an algorithm that can protect the network from the BHA node. This article introduces Ad-hoc On-Demand Distance Vector (AODV), a new updated routing protocol that combines the advantages of the Artificial Bee Colony (ABC), Artificial Neural Network (ANN), and Support Vector Machine (SVM) techniques. The combination of the SVM with ANN is the novelty of the proposed model that helps to identify the attackers within the discovered route using the AODV routing mechanism. Here, the model is trained using ANN but the selection of training data is performed using the ABC fitness function followed by SVM. The role of ABC is to provide a better route for data transmission between the source and the destination node. The optimized route, suggested by ABC, is then passed to the SVM model along with the node's properties. Based on those properties ANN decides whether the node is a normal or an attacker node. The simulation analysis performed in MATLAB shows that the proposed work exhibits an improvement in terms of Packet Delivery Ratio (PDR), throughput, and delay. To validate the system efficiency, a comparative analysis is performed against the existing approaches such as Decision Tree and Random Forest that indicate that the utilization of the SVM with ANN is a beneficial step regarding the detection of BHA attackers in the MANET-based IoT networks.


Assuntos
Algoritmos , Inteligência Artificial , Simulação por Computador , Redes Neurais de Computação , Máquina de Vetores de Suporte
12.
Sensors (Basel) ; 20(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927721

RESUMO

The swarm intelligence (SI)-based bio-inspired algorithm demonstrates features of heterogeneous individual agents, such as stability, scalability, and adaptability, in distributed and autonomous environments. The said algorithm will be applied to the communication network environment to overcome the limitations of wireless sensor networks (WSNs). Herein, the swarm-intelligence-centric routing algorithm (SICROA) is presented for use in WSNs that aim to leverage the advantages of the ant colony optimization (ACO) algorithm. The proposed routing protocol addresses the problems of the ad hoc on-demand distance vector (AODV) and improves routing performance via collision avoidance, link-quality prediction, and maintenance methods. The proposed method was found to improve network performance by replacing the periodic "Hello" message with an interrupt that facilitates the prediction and detection of link disconnections. Consequently, the overall network performance can be further improved by prescribing appropriate procedures for processing each control message. Therefore, it is inferred that the proposed SI-based approach provides an optimal solution to problems encountered in a complex environment, while operating in a distributed manner and adhering to simple rules of behavior.


Assuntos
Inteligência Artificial , Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos
13.
Sensors (Basel) ; 18(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538314

RESUMO

Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node's transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical.

14.
Sensors (Basel) ; 17(6)2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28629142

RESUMO

Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV's research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV.

15.
Sensors (Basel) ; 16(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27347962

RESUMO

The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities.

16.
Sci Rep ; 14(1): 7818, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570527

RESUMO

In wireless networking, the security of flying ad hoc networks (FANETs) is a major issue, and the use of drones is growing every day. A distributed network is created by a drone network in which nodes can enter and exit the network at any time. Because malicious nodes generate bogus identifiers, FANET is unstable. In this research study, we proposed a threat detection method for detecting malicious nodes in the network. The proposed method is found to be most effective compared to other methods. Malicious nodes fill the network with false information, thereby reducing network performance. The secure ad hoc on-demand distance vector (AODV) that has been suggested algorithm is used for detecting and isolating a malicious node in FANET. In addition, because temporary flying nodes are vulnerable to attacks, trust models based on direct or indirect reliability similar to trusted neighbors have been incorporated to overcome the vulnerability of malicious/selfish harassment. A node belonging to the malicious node class is disconnected from the network and is not used to forward or forward another message. The FANET security performance is measured by throughput, packet loss and routing overhead with the conventional algorithms of AODV (TAODV) and reliable AODV secure AODV power consumption decreased by 16.5%, efficiency increased by 7.4%, and packet delivery rate decreased by 9.1% when compared to the second ranking method. Reduced packet losses and routing expenses by 9.4%. In general, the results demonstrate that, in terms of energy consumption, throughput, delivered packet rate, the number of lost packets, and routing overhead, the proposed secure AODV algorithm performs better than the most recent, cutting-edge algorithms.

17.
Sci Rep ; 14(1): 23467, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379421

RESUMO

The Flying Ad-hoc Network (FANET) can be defined as the Ad-hoc network that connects unmanned aerial vehicles flying in the space with each other and with a ground base station. However, the 3D movement of these drones with higher speeds results in a network of highly dynamic topology and intermittent connections, making the standard Ad Hoc routing protocols are not suitable for FANET. The approaches followed to address this issue include designing from scratch a routing protocol specific to FANET or modifying the existing protocols. From the view point of reliability, accuracy, and time, it is preferable to base the work on a protocol standard. But before amending the standard, tuning its performance and applying it under suitable conditions may be satisfactory for the new use. Therefore, this work considers flat FANET of fully mission-controlled drones and performs an extensive parametric simulation study to determine the best conditions and parameters' values for applying the popular Ad Hoc On-demand Distance Vector (AODV) to it. After deducing the recommended operating environment (FAODVN-OE), some examples of amendments were suggested to further improve the performance. It was found that the modified FAODVN-OE achieves high performance compared to the default standard in terms of jitter and delay. It helped reduce jitter and delay by an average of 93.2% and 83.8%, respectively, while exhausting less energy; however the network experiences a 24.5% reduction in packet delivery ratio.

18.
PeerJ Comput Sci ; 9: e1508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077574

RESUMO

The performance of any communication system heavily relies on the efficient routing of interventions. This article addresses the significant issue of routing protocol selection for optimal path determination in networks. Particularly, when wireless communication occurs among mobile nodes with limited resources, such as batteries, the routing problem becomes even more challenging. This article proposes the Fuzzy Control Energy Efficient (FCEE) routing protocol to overcome these challenges. The FCEE protocol combines the Ad-Hoc On-Demand Distance Vector (AODV) protocol with fuzzy logic techniques to enhance network lifetime and performance. The proposed approach introduces a memory-based channel integrated with fuzzy logic methodologies, which effectively restricts the forwarding of unnecessary broadcast packets based on the energy availability of the operating node. Through extensive simulations, demonstrate the promising capabilities of FCEE as a routing protocol for wireless mesh networks. To further assess the effectiveness of the FCEE protocol, the proposed article compares it with two existing routing protocols: AODV and Intelligent Routing AODV (IRAODV). The simulation results shows that the FCEE routing protocol significantly enhances the reliability of the conventional AODV, providing improved link connectivity and longer route lifetimes. Additionally, our proposed protocol enhances the quality of service (QoS) for mesh routing, with an average throughput of 351.374 (Kbps) compared to 90 (Kbps) for IRAODV and 39 (Kbps) for AODV. Moreover, FCEE exhibits superior energy efficiency with an average energy consumption of 14, while IRAODV and AODV consume 40 and 90 joules, respectively. In conclusion, the FCEE routing protocol demonstrates its potential to address the challenges of efficient routing in wireless mesh networks. By leveraging fuzzy logic and integrating it with AODV, FCEE enhances network lifetime, performance, and energy efficiency, making it a promising solution for future wireless communication systems.

19.
PeerJ Comput Sci ; 8: e1079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091998

RESUMO

Mobile ad-hoc networks (MANETs) and wireless mesh networks (WMNs) are used in a variety of research areas, including the military, industry, healthcare, agriculture, the Internet of Things (IoT), transportation, and smart cities. The swift advancement in MANET technology is the driving force behind this rising adoption rate. Routing over MANET is a critical problem due to the dynamic nature of the link qualities, even when nodes are static. A key challenge in MANETs is the need for an efficient routing protocol that establishes a route according to certain performance metrics related to the link quality. The routing protocols utilised by the nodes in WMNs and MANETs are distinct. Nodes in both types of networks exchange data packets through the routing protocols. For this highly mobile network, the ad-hoc On-Demand Distance Vector (AODV) routing protocol has been suggested as a possible solution. Recent years have attracted researchers' attention to AODV since it is a routing technique for ad-hoc networks that prevents looping. The architecture of this routing protocol considers several factors, including the mobility of nodes, the failure of connection links, and the loss of packets. In this systematic review, one of the key focuses is bringing attention to the classic AODV, which was developed after discussing the recent development of several versions of AODV. The AODV routing protocol performs a path strength check to generate a more reliable and secure route between the source and destination nodes. In AODV, investigations demonstrate advances in both the format protocol approach and the network simulation-2 (NS-2), and these improvements were made in the same scenario used to revitalise AODV. It has been discovered that the AODV is more effective in several aspects, such as throughput, end-to-end delay, packet delivery ratio (PDR), energy consumption, jitter, packet loss ratio, and network overhead. Furthermore, this paper presents this systematic review based on AODV modifications in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). It also provides a methodological framework for the papers' selection.

20.
Heliyon ; 8(11): e11678, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439715

RESUMO

The industries are presently exploring the use of wired and wireless systems for control, automation, and monitoring. The primary benefit of wireless technology is that it reduces the installation cost, in both money and labor terms, as companies already have a significant investment in wiring. The research article presents the work on the analysis of Mobile Ad Hoc Network (MANET) in a wireless real-time communication medium for a Networked Control System (NCS), and determining whether the simulated behavior is significant for a plant or not. The behavior of the MANET is analyzed for Ad-hoc on-demand distance vector routing (AODV) that maintenances communication among 150 nodes for NCS. The simulation is carried out in Network Simulator (NS2) software with different nodes cluster to estimate the network throughput, end-to-end delay, packet delivery ratio (PDR), and control overhead. The benefit of MANET is that it has a fixed topology, which permits flexibility since mobile devices may be used to construct ad-hoc networks anywhere, scalability because more nodes can be added to the network, and minimal operating expenses in that no original infrastructure needs to be developed. AODV routing is a flat routing system that does not require central routing nodes. As the network grows in size, the network can be scaled to meet the network design and configuration requirements. AODV is flexible to support different configurations and topological nodes in dynamic networks because of its versatility. The advantage of such network simulation and routing behavior provides the future direction for the researchers who are working towards the embedded hardware solutions for NCS, as the hardware complexity depends on the delay, throughput, and PDR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa