Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 83(15): 2709-2725.e10, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451262

RESUMO

For cells to perform their biological functions, they need to adopt specific shapes and form functionally distinct subcellular compartments. This is achieved in part via an asymmetric distribution of mRNAs within cells. Currently, the main model of mRNA localization involves specific sequences called "zipcodes" that direct mRNAs to their proper locations. However, while thousands of mRNAs localize within cells, only a few zipcodes have been identified, suggesting that additional mechanisms contribute to localization. Here, we assess the role of mRNA stability in localization by combining the isolation of the soma and neurites of mouse primary cortical and mESC-derived neurons, SLAM-seq, m6A-RIP-seq, the perturbation of mRNA destabilization mechanisms, and the analysis of multiple mRNA localization datasets. We show that depletion of mRNA destabilization elements, such as m6A, AU-rich elements, and suboptimal codons, functions as a mechanism that mediates the localization of mRNAs associated with housekeeping functions to neurites in several types of neurons.


Assuntos
Neuritos , Neurônios , Animais , Camundongos , RNA Mensageiro/genética , Códon , Estabilidade de RNA
2.
IUBMB Life ; 75(10): 880-892, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37409758

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression in plants. They have been linked to a wide range of molecular mechanisms, including epigenetics, miRNA activity, RNA processing and translation, and protein localization or stability. In Arabidopsis, characterized lncRNAs have been implicated in several physiological contexts, including plant development and the response to the environment. Here we searched for lncRNA loci located nearby key genes involved in root development and identified the lncRNA ARES (AUXIN REGULATOR ELEMENT DOWNSTREAM SOLITARYROOT) downstream of the lateral root master gene IAA14/SOLITARYROOT (SLR). Although ARES and IAA14 are co-regulated during development, the knockdown and knockout of ARES did not affect IAA14 expression. However, in response to exogenous auxin, ARES knockdown impairs the induction of its other neighboring gene encoding the transcription factor NF-YB3. Furthermore, knockdown/out of ARES results in a root developmental phenotype in control conditions. Accordingly, a transcriptomic analysis revealed that a subset of ARF7-dependent genes is deregulated. Altogether, our results hint at the lncRNA ARES as a novel regulator of the auxin response governing lateral root development, likely by modulating gene expression in trans.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203214

RESUMO

Single-agent regorafenib is approved in Canada for metastatic colorectal cancer (mCRC) patients who have failed previous lines of therapy. Identifying prognostic biomarkers is key to optimizing therapeutic strategies for these patients. In this clinical study (NCT01949194), we evaluated the safety and efficacy of single-agent regorafenib as a second-line therapy for mCRC patients who received it after failing first-line therapy with an oxaliplatin or irinotecan regimen with or without bevacizumab. Using various omics approaches, we also investigated putative biomarkers of response and resistance to regorafenib in metastatic lesions and blood samples in the same cohort. Overall, the safety profile of regorafenib seemed similar to the CORRECT trial, where regorafenib was administered as ≥ 2 lines of therapy. While the mutational landscape showed typical mutation rates for the top five driver genes (APC, KRAS, BRAF, PIK3CA, and TP53), KRAS mutations were enriched in intrinsically resistant lesions. Additional exploration of genomic-phenotype associations revealed several biomarker candidates linked to unfavorable prognoses in patients with mCRC using various approaches, including pathway analysis, cfDNA profiling, and copy number analysis. However, further research endeavors are necessary to validate the potential utility of these promising genes in understanding patients' responses to regorafenib treatment.


Assuntos
Neoplasias do Colo , Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Humanos , Biomarcadores , Compostos de Fenilureia/uso terapêutico
4.
Environ Toxicol ; 36(3): 408-416, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098623

RESUMO

China is the world's largest rare earth producer and exporter, previous studies have shown that rare earth elements can cause oxidative damage in animal testis. However, the molecular mechanisms underlying these observations have yet to be elucidated. In this paper, male mice were fed with different doses (10, 20, and 40 mg/kg BW) of LaCl3 for 90 consecutive days, regulatory role of nuclear factor erythroid-2 related factor 2 (Nrf-2)/antioxidant response element (ARE) pathway in testicular oxidative stress induced by LaCl3 were investigated. Analysis showed that LaCl3 exposure could lead to severe testicular pathological changes and apoptosis in spermatogenic cells, it up-regulated the peroxidation of lipids, proteins and DNA, and induced the excessive levels of reactive oxygen species (ROS) production in mouse testis, reduced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione S epoxide transferase (GST) as well as the glutathione (GSH) content. Furthermore, exposure to LaCl3 also downregulated the expression of Nrf2 and its target gene products, including heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase [quinine] 1(NQO1), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K), but upregulated the expression of Kelch-like ECH-related protein 1 (Keap1) in damaged mouse testes. Collectively, our data imply that the oxidative damage induced by LaCl3 in testis was related to inhibition of the Nrf-2/AREs pathway activation.


Assuntos
Lantânio/toxicidade , Estresse Oxidativo/fisiologia , Animais , Elementos de Resposta Antioxidante , Apoptose , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testículo/metabolismo
5.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380668

RESUMO

Genetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis. Similar to other tumor suppressors, TTP expression is frequently downregualted in various human cancers, and its low expression is correlated with poor prognosis. Additionally, disruption in the regulation of TTP by various mechanisms results in the inactivation of TTP protein or altered TTP expression. A recent study showing alleviation of Myc-driven lymphomagenesis by the forced expression of TTP has shed light on new therapeutic avenues for cancer prevention and treatment through the restoration of TTP expression. In this review, we summarize key oncogenes subjected to the TTP-mediated mRNA degradation, and discuss how dysregulation of TTP can contribute to tumorigenesis. In addition, the control mechanism underlying TTP expression at the posttranscriptional and posttranslational levels will be discussed.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Tristetraprolina/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Progressão da Doença , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/metabolismo
6.
Eur J Immunol ; 45(5): 1500-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678110

RESUMO

Secretion of type I interferon (IFN) is the first cellular reaction to invading pathogens. Despite the protective function of these cytokines, an excessive response to their action can contribute to serious pathologies, such as autoimmune diseases. Transcripts of most cytokines contain adenylate-uridylate (A/U)-rich elements (AREs) that make them highly unstable. RNA-binding proteins (RBPs) are mediators of the regulatory mechanisms that determine the fate of mRNAs containing AREs. Here, we applied an affinity proteomic approach and identified lethal, abnormal vision, drosophila-like 1 (ELAVL1)/Hu antigen R (HuR) as the predominant RBP of the IFN-ß mRNA ARE. Reduced expression or chemical inhibition of HuR severely hampered the type I IFN response in various cell lines and fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. These results define a role for HuR as a potent modulator of the type I IFN response. Taken together, HuR could be used as therapeutic target for diseases where type I IFN production is exaggerated.


Assuntos
Proteínas ELAV/imunologia , Interferon Tipo I/biossíntese , Interferon beta/genética , Elementos Ricos em Adenilato e Uridilato , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Sequência de Bases , Proteínas ELAV/antagonistas & inibidores , Proteínas ELAV/genética , Proteína Semelhante a ELAV 1 , Células HeLa , Humanos , Indutores de Interferon/farmacologia , Dados de Sequência Molecular , Poli I-C/farmacologia , Multimerização Proteica , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Membrana Sinovial/imunologia
7.
Fetal Pediatr Pathol ; 35(4): 239-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182768

RESUMO

AIM: To determine the function of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4), total oxidant status (TOS), total antioxidant status (TAS), and aryl esterase (ARES) in preterm premature rupture of membranes (PPROM) and to investigate the association with premature rupture of membranes (PROMs). MATERIAL AND METHODS: 58 pregnant women were included in this prospective study which comprised 29 PPROM patients as the study group and 29 patients, having healthy amniotic membranes, as the control group. ADAMTS4, TAS, TOS, and ARES levels were studied in the amniotic membrane homogenates of the patients. RESULTS: ADAMTS4, TAS TOS, and ARES levels of amniotic membrane lysates were significantly different between PPROM and control groups (p < 0.001, p < 0.001, p = 0.008 and p = 0.002, respectively). Increased amniotic membrane ADAMTS4 (OR: 1.051 95% CI 1.006-1.098, p = 0.024) and TOS (OR: 12.777 95% CI 1.595-102.323, p = 0.016) were found to be significantly associated with the increased risk of PPROM. CONCLUSION: ADAMTS4, TOS, and ARES levels were higher and TAS level was lower in PPROM patients than the normal healthy control group which had healthy amniotic membranes at term. As a result, ADAMTS4 may have a role in the pathogenesis by causing increased oxidative and inflammatory environment in PPROM.


Assuntos
Proteína ADAMTS4/biossíntese , Âmnio/metabolismo , Antioxidantes/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Estresse Oxidativo/fisiologia , Proteína ADAMTS4/análise , Adulto , Antioxidantes/análise , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Ruptura Prematura de Membranas Fetais/etiologia , Humanos , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo , Estudos Prospectivos
8.
Biomed Environ Sci ; 28(6): 410-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26177901

RESUMO

OBJECTIVE: To assess the data quality and estimate the provincial infant mortality rate (1q0) from China's sixth census. METHODS: A log-quadratic model is applied to under-fifteen data. We analyze and compare the average relative errors (AREs) for 1q0 between the estimated and reported values using the leave-one-out cross-validation method. RESULTS: For the sixth census, the AREs are more than 100% for almost all provinces. The estimated average 1q0 level for 31 provinces is 12.3‰ for males and 10.7‰ for females. CONCLUSION: The data for the provincial 1q0 from China's sixth census have a serious data quality problem. The actual levels of 1q0 for each province are significantly higher than the reported values.


Assuntos
Censos , Mortalidade Infantil , Adolescente , Adulto , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
9.
RNA Biol ; 11(10): 1250-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584704

RESUMO

Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its ß-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.


Assuntos
Motivos de Aminoácidos/genética , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Dicroísmo Circular , Proteínas ELAV/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
10.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817960

RESUMO

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

11.
Acta Pharm Sin B ; 12(3): 1041-1053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530130

RESUMO

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

12.
Cytokine X ; 3(1): 100049, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604565

RESUMO

T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.

13.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589395

RESUMO

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

14.
J Clin Med ; 9(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952230

RESUMO

BACKGROUND: Mevastatin (MVS), a 3-hydroxy-3-methylglutaryl coenzyme, a reductase (HMG-CoA) inhibitor, has anti-inflammatory effects potentially via up-regulation of heme oxygenase-1 (HO-1). However, the mechanisms underlying MVS-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). METHODS: HO-1 and intercellular adhesion molecule (ICAM)-1 expression were determined using real-time PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated using pharmacological inhibitors or specific small interfering RNA (siRNA)s. Interaction between Nrf2 and the antioxidant response element (ARE) binding site for the HO-1 promoter was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS: Upregulation of HO-1 by MVS attenuated the tumor necrosis factor (TNF)-α-stimulated ICAM-1 expression associated with THP-1 adhesion to HPAEpiCs. These inhibitory effects of HO-1 were reversed by tin protoporphyrin (SnPP)IX or by transfection with HO-1 siRNA. MVS-induced HO-1 expression was mediated via NADPH oxidase (Nox)-derived reactive oxygen species (ROS) generation. Activation of Nox2/ROS further stimulated the phosphorylation of p47phox, proto-oncogene tyrosine-protein kinase (c-Src), platelet-derived growth factor receptor (PDFGR)α, protein kinase B (Akt), and Nrf2, which were inhibited by siRNAs. Pretreatment with pharmacological inhibitors, including diphenyleneiodonium (DPI), apocynin (APO), N-acetyl-L-cysteine (NAC), PP1, AG1296, or LY294002, reduced the MVS-activated Nrf2 nuclear-translocation binding to the ARE on the HO-1 promoter. CONCLUSIONS: MVS-induced HO-1 is, at least in part, mediated through a p47phox/Nox2/ROS-dependent activation of c-Src/PDGFRα/PI3K/Akt-regulated Nrf2/ARE axis and suppresses the TNF-α-mediated inflammatory responses in HPAEpiCs.

15.
Front Chem ; 7: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214568

RESUMO

The antioxidant response elements (AREs) play a significant role in occurrence of oxidative stress and may cause multitudinous toxicity effects in the pathogenesis of a variety of diseases. Determining if one compound can activate AREs is crucial for the assessment of potential risk of compound. Here, a series of predictive models by applying multiple deep learning algorithms including deep neural networks (DNN), convolution neural networks (CNN), recurrent neural networks (RNN), and highway networks (HN) were constructed and validated based on Tox21 challenge dataset and applied to predict whether the compounds are the activators or inactivators of AREs. The built models were evaluated by various of statistical parameters, such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and receiver operating characteristic (ROC) curve. The DNN prediction model based on fingerprint features has best prediction ability, with accuracy of 0.992, 0.914, and 0.917 for the training set, test set, and validation set, respectively. Consequently, these robust models can be adopted to predict the ARE response of molecules fast and accurately, which is of great significance for the evaluation of safety of compounds in the process of drug discovery and development.

16.
J Clin Med ; 8(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30934992

RESUMO

The upregulation of heme oxygenase-1 (HO-1) by the carbon monoxide-releasing molecule (CORM)-2 may be mediated through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [Nox] and reactive oxygen species (ROS) generation, which could provide cytoprotection against various cellular injuries. However, the detailed mechanisms of CORM-2-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. Therefore, we dissected the mechanisms underlying CORM-2-induced HO-1 expression in HPAEpiCs. We found that the administration of mice with CORM-2 attenuated the tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte count as revealed by immunohistochemical staining, western blot, real-time polymerase chain reaction (PCR), and cell count. Furthermore, TNF-α-induced ICAM-1 expression associated with monocyte adhesion to HPAEpiCs was attenuated by infection with adenovirus (adv)-HO-1 or incubation with CORM-2. These inhibitory effects of HO-1 were reversed by pretreatment with hemoglobin (Hb). Moreover, CORM-2-induced HO-1 expression was mediated via the phosphorylation of p47phox, c-Src, epidermal growth factor receptor (EGFR), Akt, and NF-E2-related factor 2 (Nrf2), which were inhibited by their pharmacological inhibitors, including diphenyleneiodonium (DPI) or apocynin (APO), ROS [N-acetyl-L-cysteine (NAC)], PP1, AG1478, PI3K (LY294002), or Akt (SH-5), and small interfering RNAs (siRNAs). CORM-2-enhanced Nrf2 expression, and anti-oxidant response element (ARE) promoter activity was also inhibited by these pharmacological inhibitors. The interaction between Nrf2 and AREs was confirmed with a chromatin immunoprecipitation (ChIP) assay. These findings suggest that CORM-2 increases the formation of the Nrf2 and AREs complex and binds with ARE-binding sites via Src, EGFR, and PI3K/Akt, which further induces HO-1 expression in HPAEpiCs. Thus, the HO-1/CO system might suppress TNF-α-mediated inflammatory responses and exert a potential therapeutic strategy in pulmonary diseases.

17.
J Exp Clin Cancer Res ; 38(1): 121, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850014

RESUMO

The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.


Assuntos
Carcinogênese/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Estabilidade de RNA/genética , Transdução de Sinais/genética
18.
Cell Rep ; 24(5): 1176-1189, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067974

RESUMO

This work identifies the fragile-X-related protein (FXR1) as a reciprocal regulator of HuR target transcripts in vascular smooth muscle cells (VSMCs). FXR1 was identified as an HuR-interacting protein by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HuR-FXR1 interaction is abrogated in RNase-treated extracts, indicating that their association is tethered by mRNAs. FXR1 expression is induced in diseased but not normal arteries. siRNA knockdown of FXR1 increases the abundance and stability of inflammatory mRNAs, while overexpression of FXR1 reduces their abundance and stability. Conditioned media from FXR1 siRNA-treated VSMCs enhance activation of naive VSMCs. RNA EMSA and RIP demonstrate that FXR1 interacts with an ARE and an element in the 3' UTR of TNFα. FXR1 expression is increased in VSMCs challenged with the anti-inflammatory cytokine IL-19, and FXR1 is required for IL-19 reduction of HuR. This suggests that FXR1 is an anti-inflammation responsive, HuR counter-regulatory protein that reduces abundance of pro-inflammatory transcripts.


Assuntos
Proteína Semelhante a ELAV 1/genética , Músculo Liso Vascular/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Células Cultivadas , Proteína Semelhante a ELAV 1/metabolismo , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Ligação Proteica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Biomed Pharmacother ; 108: 698-706, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248537

RESUMO

Cerebral ischemia challenge evokes an adaptive defensive system through the induction of antioxidant enzymes. Many of such antioxidant enzymes are regulated essentially by the nuclear factor erythroid 2-related factor-2 (NRF2). Compelling evidence supports that targeting NRF2 signaling is a promising therapeutic strategy to alleviate post-I/R brain injury, but the molecular mechanisms underlying this strategy have yet to be elucidated. Herein, we show that the expression of transcription factor Yin Yang 1 (YY1) is significantly upregulated during the recovery following middle cerebral artery occlusion (MCAO). Ablation of endogenous YY1 using cerebral ventricle injection of siRNA exacerbated I/R-induced neuronal damage and attenuated the antioxidant defensive system. Mechanistically, low levels of reactive oxygen species (ROS) production stimulated neuronal YY1 expression, whereas high levels of ROS exhibited a noticeable inhibitory effect. The evoked YY1, in concert with other coregulators, recruited to the antioxidant responsive elements (AREs) binding site and then amplified the NRF2-mediated ARE transcription, thereby protecting cells against damage by potentiating antioxidant response. In this regard, compromise of YY1 expression by ROS overactivity is an important etiology that sabotages the antioxidant defensive system and consequently deteriorate s neuronal damage following I/R injury. Taken together, our findings provide novel evidence on a delicate and synergistical collaboration between YY1 and the master transcription factor NRF2 that functions to mobilize the cell's antioxidant machinery.


Assuntos
Antioxidantes/metabolismo , Isquemia Encefálica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia
20.
Acta Pharmaceutica Sinica B ; (6): 1041-1053, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929344

RESUMO

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa