Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Genet ; 106(4): 437-447, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221575

RESUMO

Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.


Assuntos
Astenozoospermia , Consanguinidade , Homozigoto , Linhagem , Splicing de RNA , Cauda do Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patologia , Sequenciamento do Exoma , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Splicing de RNA/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Espermatozoides/ultraestrutura , Espermatozoides/patologia
2.
Cancer Inform ; 22: 11769351231177269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313373

RESUMO

Introduction: One of the most pressing goals for cancer immunotherapy at this time is the identification of actionable antigens. Methods: This study relies on the following considerations and approaches to identify potential breast cancer antigens: (i) the significant role of the adaptive immune receptor, complementarity determining region-3 (CDR3) in antigen binding, and the existence cancer testis antigens (CTAs); (ii) chemical attractiveness; and (iii) informing the relevance of the integration of items (i) and (ii) with patient outcome and tumor gene expression data. Results: We have assessed CTAs for associations with survival, based on their chemical complementarity with tumor resident T-cell receptor (TCR), CDR3s. Also, we have established gene expression correlations with the high TCR CDR3-CTA chemical complementarities, for Granzyme B, and other immune biomarkers. Conclusions: Overall, for several independent TCR CDR3 breast cancer datasets, the CTA, ARMC3, stood out as a completely novel, candidate antigen based on multiple algorithms with highly consistent approaches. This conclusion was facilitated by use of the recently constructed Adaptive Match web tool.

3.
Genes (Basel) ; 13(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36553564

RESUMO

Stuttering is a common neurodevelopment speech disorder that negatively affects the socio-psychological dimensions of people with disability. It displays many attributes of a complex genetic trait, and a few genetic loci have been identified through linkage studies. Stuttering is highly variable regarding its phenotypes and molecular etiology. However, all stutters have some common features, including blocks in speech, prolongation, and repetition of sounds, syllables, and words. The involuntary actions associated with stuttering often involve increased eye blinking, tremors of the lips or jaws, head jerks, clenched fists, perspiration, and cardiovascular changes. In the present study, we recruited a consanguineous Pakistani family showing an autosomal recessive mode of inheritance. The exome sequencing identified a homozygous splice site variant in ARMC3 (Armadillo Repeat Containing 3) in a consanguineous Pashtun family of Pakistani origin as the underlying genetic cause of non-syndromic stuttering. The homozygous splice site variant (NM_173081.5:c.916 + 1G > A) segregated with the stuttering phenotype in this family. The splice change leading to the skipping of exon-8 is a loss of function (LoF) variant, which is predicted to undergo NMD (Nonsense mediated decay). Here, we report ARMC3 as a novel candidate gene causing the stuttering phenotype. ARMC3 may lead to neurodevelopmental disorders, including stuttering in humans.


Assuntos
Proteínas do Domínio Armadillo , Gagueira , Humanos , Éxons , Homozigoto , Fenótipo , Gagueira/genética , Linhagem , Proteínas do Domínio Armadillo/genética
4.
Dev Cell ; 56(16): 2313-2328.e7, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428398

RESUMO

How autophagy initiation is regulated and what the functional significance of this regulation is are unknown. Here, we characterized the role of yeast Vac8 in autophagy initiation through recruitment of PIK3C3-C1 to the phagophore assembly site (PAS). This recruitment is dependent on the palmitoylation of Vac8 and on its middle ARM domains for binding PIK3C3-C1. Vac8-mediated anchoring of PIK3C3-C1 promotes PtdIns3P generation at the PAS and recruitment of the PtdIns3P binding protein Atg18-Atg2. The mouse homolog of Vac8, ARMC3, is conserved and functions in autophagy in mouse testes. Mice lacking ARMC3 have normal viability but show complete male infertility. Proteomic analysis indicated that the autophagic degradation of cytosolic ribosomes was blocked in ARMC3-deficient spermatids, which caused low energy levels of mitochondria and motionless flagella. These studies uncovered a function of Vac8/ARMC3 in PtdIns3-kinase anchoring at the PAS and its physical significance in mammalian spermatogenesis with a germ tissue-specific autophagic function.


Assuntos
Autofagia , Ribossomos/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatogênese , Adulto , Animais , Autofagossomos/metabolismo , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Motilidade dos Espermatozoides , Cauda do Espermatozoide/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Autophagy ; 17(12): 4512-4514, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705610

RESUMO

Macroautophagy/autophagy is special because the double-layer lipid-formed autophagosome is formed by de novo generation. Phosphatidylinositol-3-phosphate (PtdIns3P) produced by class III phosphatidylinositol 3-kinase complex I (PtdIns3K-CI) is an essential source lipid for the formation of autophagosomes. However, how autophagy is initiated is unknown. In other words, the mechanism by which PtdIns3K-CI is recruited to the phagophore assembly site (PAS) to initiate autophagosome formation is unclear. We recently uncovered the pivotal role of yeast Vac8 in autophagy initiation through the recruitment of PtdIns3K-CI to the PAS. N-terminal palmitoylation of Vac8 anchors it to the vacuole membrane, and the middle ARM domains bind PtdIns3K-CI, leading to the generation of PtdIns3P at the PAS and subsequent autophagosome formation. We found that mouse ARMC3 is the homolog of yeast Vac8 and that its autophagic roles are conserved. Interestingly, spermatids from mice with Armc3 deletion showed blocked ribophagy, low energy levels of mitochondria and motionless flagella, which caused male infertility. These findings revealed a germ tissue-specific autophagic function of ARMC3 in complex eukaryotic species.


Assuntos
Proteínas do Domínio Armadillo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas do Domínio Armadillo/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Espermatogênese , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa