Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mol Biol Rep ; 51(1): 104, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224417

RESUMO

BACKGROUND: Autosomal Recessive Primary Microcephaly (MCPH) is a rare, neurodevelopmental disorder associated with mild to severe mental retardation. It is characterized by reduced cerebral cortex that ultimately leads to reduction in skull size less than - 3 S.D below the mean for normal individuals having same age and sex. Till date, 30 known loci have been reported for MCPH. METHODS: In the present study, Sanger sequencing was performed followed by linkage analysis to validate the mutation in ASPM gene of the consanguineous Pakistani clans. Bioinformatics tools were also used to confirm the pathogenicity of the diseased variant in the gene. MRI scan was used to compare the brain structure of both the affected individuals (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). RESULTS: Our study described a consanguineous family with two patients with a known ASPM (MCPH5) variant c.8508_8509delGA causing a frameshift mutation in exon 18 which located in calmodulin-binding IQ domain of the ASPM protein. The salient feature of this study is that a single variant led to significantly distinct changes in the architecture of brain of both siblings which is further confirmed by MRI results. The computation analysis showed that the change in the conservation of this residue cause this variant highly pathogenic. Carrier screening and genetic counselling were also remarkable features of this study (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). CONCLUSION: This study explores the extraordinary influence of a single ASPM variant on divergent brain structure in consanguineous siblings and enable us to reduce the incidence of further microcephalic cases in this Pakistani family (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023).


Assuntos
Encéfalo , Irmãos , Humanos , Consanguinidade , Paquistão , Encéfalo/diagnóstico por imagem , Proteínas do Tecido Nervoso
2.
Ultrasound Obstet Gynecol ; 63(2): 271-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37551048

RESUMO

Microcephaly with simplified gyral pattern (MSG) is an intrinsic genetic central nervous system disorder, characterized by microcephaly (a reduction of brain volume) and a simplified gyral pattern (a reduced number of gyri and shallow sulci associated with normal cortical thickness and neuroanatomical architecture), related to a reduced number of neuronal progenitors in the germinal matrix. We report the first prenatal series of MSG and define the prenatal imaging pattern, which should inform diagnosis and guide prenatal counseling in cases of fetal microcephaly. In this single-center retrospective study of fetuses with MSG, we assessed features on ultrasound and magnetic resonance imaging (MRI), as well as genetic and neuropathological/postnatal data. We included eight patients who had been referred following observation of microcephaly. Ultrasound examination confirmed microcephaly, with a mean growth delay in head circumference of 3.4 weeks, associated with both a lack of gyration and a lack of opercularization of the Sylvian fissure and without any extracephalic anomaly. Fetal brain MRI confirmed lack of gyration with normal cortical thickness and normal intensity of the white matter in all cases. These MRI features led to exclusion of migration/corticogenesis disorders (lissencephaly/polymicrogyria), instead suggesting MSG. The posterior fossa was normal in seven of the eight cases. The corpus callosum was thin in four cases, hypoplastic in two and dysgenetic in two. In four cases, the pregnancy was terminated. The diagnosis of MSG was confirmed from neuropathological and postnatal MRI data. MSG was associated with a genetic diagnosis of RTTN (n = 1) and ASPM (n = 2) biallelic variants in three of the six cases in which genetic work-up was performed. Mild or moderate intellectual deficit with speech delay was present in the three surviving children who were at least 5 years of age at their last examination, without seizures. In conclusion, in the presence of isolated fetal microcephaly with lack of gyration on ultrasound, fetal cerebral MRI is key to diagnosing MSG, which, in the majority of cases, affects the supratentorial space exclusively, and to ruling out other cortical malformations that show a similar sonographic pattern. In addition to imaging, genetic assessment may guide prenatal counseling, since the prenatal prognosis of MSG is different from that of both diffuse polymicrogyria and lissencephaly. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Lisencefalia , Microcefalia , Malformações do Sistema Nervoso , Polimicrogiria , Criança , Feminino , Gravidez , Humanos , Microcefalia/diagnóstico por imagem , Estudos Retrospectivos , Diagnóstico Pré-Natal , Imageamento por Ressonância Magnética/métodos , Ultrassonografia Pré-Natal/métodos
3.
Cell Biol Int ; 47(7): 1209-1221, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36883909

RESUMO

Abnormal spindle-like microcephaly-associated (ASPM) protein is crucial to the mitotic spindle function during cell replication and tumor progression in multiple tumor types. However, the effect of ASPM in anaplastic thyroid carcinoma (ATC) has not yet been understood. The present study is to elucidate the function of ASPM in the migration and invasion of ATC. ASPM expression is incrementally upregulated in ATC tissues and cell lines. Knockout (KO) of ASPM pronouncedly attenuates the migration and invasion of ATC cells. ASPM KO significantly reduces the transcript levels of Vimentin, N-cadherin, and Snail and increases E-cadherin and Occludin, thereby inhibiting epithelial-to-mesenchymal transition (EMT). Mechanistically, ASPM regulates the movement of ATC cells by inhibiting the ubiquitin degradation of KIF11 and thus stabilizing it via direct binding to it. Moreover, xenograft tumors in nude mice proved that KO of ASPM could ameliorate tumorigenesis and tumor growth accompanied by a decreased protein expression of KIF11 and an inhibition of EMT. In conclusion, ASPM is a potentially useful therapeutic target for ATC. Our results also reveal a novel mechanism by which ASPM inhibits the ubiquitin process in KIF11.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Knockout , Proteínas do Tecido Nervoso , Ubiquitinas/farmacologia , Movimento Celular , Proliferação de Células , Cinesinas/genética
4.
Biotechnol Appl Biochem ; 69(6): 2296-2303, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34826358

RESUMO

Autosomal primary microcephaly (MCPH) is a heterogenetic disorder that affects brain's cerebral cortex size and leads to a reduction in the cranial vault. Along with the hallmark feature of reduced head circumference, microcephalic patients also exhibit a variable degree of intellectual disability as well. Genetic studies have reported 28 MCPH genes, most of which produce microtubule-associated proteins and are involved in cell division. Herein this study, 14 patients from seven Pashtun origin Pakistani families of primary microcephaly were analyzed. Mutation analysis was performed through targeted Sanger DNA sequencing on the basis of phenotype-linked genetic makeup. Genetic analysis in one family found a novel pathogenic DNA change in the abnormal spindle microtubule assembly (ASPM) gene (NM_018136.4:c.3871dupGA), while the rest of the families revealed recurrent nonsense mutation c.3978G>A (p.Trp1326*) in the same gene. The novel reported frameshift insertion presumably truncates the protein p.(Lys1291Glyfs*14) and deletes the N-terminus domains. Identification of novel ASPM-truncating mutation expands the mutational spectrum of the ASPM gene, while mapping of recurrent mutation c.3978G>A (p.Trp1326*) will aid in establishing its founder effect in the Khyber Pakhtunkhwa (KPK) inhabitant population of Pakistan and should be suggestively screened for premarital counseling of MCPH susceptible families. Most of the recruited families are related to first-degree consanguinity. Hence, all the family elders were counseled to avoid intrafamilial marriages.


Assuntos
Microcefalia , Humanos , Microcefalia/genética , Paquistão , Proteínas do Tecido Nervoso/genética , Mutação , Análise de Sequência de DNA
5.
Pak J Med Sci ; 38(1): 84-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035405

RESUMO

BACKGROUND & OBJECTIVES: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. METHODS: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. RESULTS: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. CONCLUSION: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling.

6.
Gastric Cancer ; 24(3): 624-639, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515163

RESUMO

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer mortality globally and a molecularly heterogeneous disease. Identifying the driver pathways in GC progression is crucial to improving the clinical outcome. Recent studies identified ASPM (abnormal spindle-like microcephaly-associated) and FOXM1 (Forkhead box protein M1) as novel Wnt and cancer stem cell (CSC) regulators; their pathogenetic roles and potential crosstalks in GC remain unclarified. METHODS: The expression patterns of ASPM isoforms and FOXM1 were profiled in normal gastric epithelial and GC tissues. The functional roles of ASPM and FOXM1 in Wnt activity, cancer stemness and GC progression, and the underlying signaling processes were investigated. RESULTS: Approximately one third of GC cells upregulate the expression of ASPM isoform I (ASPMiI) in their cytoplasm; the tumors with a high ASPMiI positive score (≥ 10%) are associated with a poor prognosis of the patients. Mechanistically, the molecular interplay among FOXM1, ASPMiI and DVL3 was found to converge on ß-catenin to control the Wnt activity and the stemness property of GC cells. This multi-mode Wnt-regulatory module serves to reinforce Wnt signals in CSCs by transcriptional regulation (FOXM1-ASPM), protein-protein interactions (ASPMiI-DVL3-ß-catenin), and nuclear translocation (FOXM1-ß-catenin). CONCLUSIONS: This study illuminates a novel Wnt- and stemness-regulatory mechanism in GC cells and identifies a novel subset of FOXM1highASPMiIhigh GC with potential to guide Wnt- and stemness-related diagnostics and therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , China , Proteína Forkhead Box M1/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Via de Sinalização Wnt
7.
J Pathol ; 250(2): 123-125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595972

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide. Late diagnosis, desmoplastic tissue and intrinsic resistance to therapy are among the main reasons for its aggressive phenotype. In addition, it is now appreciated that cancer stem cells - a rare subpopulation of tumor cells highly resistant to therapy - are crucial players in PDAC initiation, progression and resistance to therapy. In a recent article in The Journal of Pathology, Hsu et al elucidated the specific roles of abnormal spindle-like, microcephaly-associated protein (ASPM) isoforms in PDAC. The authors reported that ASPM isoform I (ASPM-iI) is mainly expressed in the cytoplasm of PDAC cells. Its expression is associated with the Wnt signaling pathway, which promotes stemness and maintains the cancer stem cell niche. Clinically, expression of ASPM-iI correlates with poor survival in PDAC patients. Thus, this study revealed a novel prognostic marker as well as a potential therapeutic target for PDAC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas do Tecido Nervoso , Prognóstico , Isoformas de Proteínas , Reino Unido
8.
J Clin Lab Anal ; 35(9): e23931, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34398984

RESUMO

BACKGROUND: Abnormal spindle-like microcephaly (ASPM) has been proved to participate in tumor progression. However, the underlying mechanism of ASPM in liver hepatocellular carcinoma (LIHC) remains elusive. METHODS: The mRNA and protein expression were determined using Western blot and qRT-PCR, and the capacities of cells proliferation, migration, and invasion were evaluated by CCK-8, colony formation, wound healing, and transwell. MeRIP was performed to validate the interaction between ASPM and methyltransferase-like 3 (METTL3). RESULTS: Herein, we found that ASPM was significantly upregulated in LIHC, and the high expression of ASPM was associated with poor LIHC prognosis. Furthermore, ASPM knockdown could suppress LIHC cells proliferation, migration, and invasion, while ASPM overexpression exerted reverse effect. Mechanistically, we revealed that the N6-methyladenosine (m6A) modification of ASPM mRNA mediated by METTL3 promoted its expression in LIHC. More importantly, silencing METTL3 suppressed LIHC cells proliferation, migration, and invasion, which could be retained by ASPM overexpression. CONCLUSION: Collectively, our findings suggested that METTL3/ASPM axis could serve as a novel promising therapeutic candidate for LIHC.


Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular/secundário , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenosina/química , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
9.
Childs Nerv Syst ; 37(1): 137-145, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591873

RESUMO

PURPOSE: In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS: Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS: Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION: Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.


Assuntos
Neoplasias Cerebelares , Neoplasias Infratentoriais , Microcefalia , Adolescente , Expressão Gênica , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Neoplasias Infratentoriais/genética , Proteínas do Tecido Nervoso/genética
10.
J Cell Mol Med ; 24(17): 9613-9626, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32667745

RESUMO

Gliomas are the most common form of malignant tumour in the central nervous system. However, the molecular mechanism of the tumorigenesis and progression of gliomas remains unclear. In this study, we used the GEO database to identify genes differentially expressed in gliomas and predict the prognosis of glioma. We observed that ASPM mRNA was increased obviously in glioma tissue, and higher ASPM mRNA expression predicted worse disease prognosis. ASPM was highly expressed in glioma cell lines U87-MG and U251, and knockdown of ASPM expression in these cells significantly repressed the proliferation, migration and invasion ability and induced G0/G1 phase arrest. In addition, down-regulation of ASPM suppressed the growth of glioma in nude mice. Five potential binding sites for transcription factor FoxM1 were predicted in the ASPM promoter. FoxM1 overexpression significantly increased the expression of ASPM and promoted the proliferation and migration of glioma cells, which was abolished by ASPM ablation. ChIP and dual-luciferase reporter analysis confirmed that FoxM1 bound to the ASPM promoter at -236 to -230 bp and -1354 to -1348 bp and activated the transcription of ASPM directly. Collectively, our results demonstrated for the first time that aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the malignant properties of glioma cells.


Assuntos
Proteína Forkhead Box M1/genética , Glioma/genética , Proteínas do Tecido Nervoso/genética , Transcrição Gênica/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Regiões Promotoras Genéticas/genética
11.
J Pathol ; 249(4): 498-508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31465125

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and treatment-resistant malignancy. The lack of pathway-informed biomarkers hampers the development of rational diagnostics or therapies. Recently, the protein abnormal spindle-like microcephaly-associated (ASPM) was identified as a novel Wnt and stemness regulator in PDAC, while the pathogenic roles of its protein isoforms remain unclarified. We developed novel isoform-specific antibodies and genetic knockdown (KD) of putative ASPM isoforms, whereby we uncovered that the levels of ASPM isoform 1 (iI) and ASPM-iII are variably upregulated in PDAC cells. ASPM isoforms show remarkably different subcellular locations; specifically, ASPM-iI is exclusively localized to the cortical cytoplasm of PDAC cells, while ASPM-iII is predominantly expressed in cell nuclei. Mechanistically, ASPM-iI co-localizes with disheveled-2 and active ß-catenin as well as the stemness marker aldehyde dehydrogenase-1 (ALDH-1), and its expression is indispensable for the Wnt activity, stemness, and the tumorigenicity of PDAC cells. By contrast, ASPM-iII selectively regulates the expression level of cyclin E and cell cycle progression in PDAC cells. The expression of ASPM-iI and ASPM-iII displays considerable intratumoral heterogeneity in PDAC tissues and only that of ASPM-iI was prognostically significant; it outperformed ALDH-1 staining and clinico-pathological variables in a multivariant analysis. Collectively, the distinct expression patterns and biological functions of ASPM isoforms may illuminate novel molecular mechanisms and prognosticators in PDAC and may pave the way for the development of therapies targeting this novel oncoprotein. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt , Família Aldeído Desidrogenase 1/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Ciclina E/metabolismo , Proteínas Desgrenhadas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Isoformas de Proteínas , beta Catenina/metabolismo
12.
Biochem Genet ; 58(3): 490-507, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32274607

RESUMO

Bladder cancer is one of the most predominant tumors of the genitourinary tract. In addition to pathological findings, the molecular modifications that might affect tumorigenesis and tumor outcome should be considered when treating bladder cancer. Accordingly, we aimed to investigate the expression levels of both the ASPM and TEF genes in bladder cancer tissues and their value in disease prognosis. The expression levels of the ASPM and TEF genes were analyzed by quantitative real-time PCR (qRT-PCR) in 90 bladder cancer tissue specimens and 90 specimens of normal urinary bladder tissue taken away from the tumor site. The upregulation of ASPM expression and the downregulation of TEF expression were observed in bladder cancer tissues compared to adjacent normal tissues, and these levels were correlated with high-grade tumors, advanced stage disease and the presence of metastasis. Both genes had the ability to predict metastatic association with sensitivity (84.62%) and specificity (68.42%; *P < 0.001) for the ASPM gene and for the TEF gene with sensitivity (80.77%) and specificity (78.95%; *P < 0.001). Additionally, Kaplan-Meier survival analysis indicated that elevated ASPM expression levels and reduced TEF expression levels significantly correlated with decreased overall survival and progression-free survival. The current analysis concludes that ASPM and TEF expressions might be used as potential biomarkers in bladder cancer patients.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Neoplásica da Expressão Gênica , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Neoplasias da Bexiga Urinária/diagnóstico , Adulto , Idoso , Biomarcadores Tumorais/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , Regulação para Cima/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
13.
J Cell Sci ; 130(21): 3676-3684, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883092

RESUMO

Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue (asp) causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, by performing CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein, CDK5RAP2 (also called CEP215), in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase, and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET (also known as KIFC1) or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Proteínas do Tecido Nervoso/genética , Polos do Fuso/metabolismo , Anáfase , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/metabolismo , Metáfase , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Modelos Biológicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Polos do Fuso/ultraestrutura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Cancer Control ; 26(1): 1073274819855118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31167546

RESUMO

Low-grade gliomas (LGGs) are a highly heterogeneous group of slow-growing, lethal, diffusive brain tumors. Temozolomide (TMZ) is a frequently used primary chemotherapeutic agent for LGGs. Currently there is no consensus as to the optimal biomarkers to predict the efficacy of TMZ, which calls for decision-making for each patient while considering molecular profiles. Low-grade glioma data sets were retrieved from The Cancer Genome Atlas. Cox regression and survival analyses were applied to identify clinical features significantly associated with survival. Subsequently, Ordinal logistic regression, co-expression, and Cox regression analyses were applied to identify genes that correlate significantly with response rate, disease-free survival, and overall survival of patients receiving TMZ as primary therapy. Finally, gene expression and methylation analyses were exploited to explain the mechanism between these gene expression and TMZ efficacy in LGG patients. Overall survival was significantly correlated with age, Karnofsky Performance Status score, and histological grade, but not with IDH1 mutation status. Using 3 distinct efficacy end points, regression and co-expression analyses further identified a novel 4-gene signature of ASPM, CCNB1, EXO1, and KIF23 which negatively correlated with response to TMZ therapy. In addition, expression of the 4-gene signature was associated with those of genes involved in homologous recombination. Finally, expression and methylation profiling identified a largely unknown olfactory receptor OR51F2 as potential mediator of the roles of the 4-gene signature in reducing TMZ efficacy. Taken together, these findings propose the 4-gene signature as a novel panel of efficacy predictors of TMZ therapy, as well as potential downstream mechanisms, including homologous recombination, OR51F2, and DNA methylation independent of MGMT.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Temozolomida/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Metilação de DNA , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Glioma/genética , Glioma/mortalidade , Recombinação Homóloga , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Prognóstico , Análise de Sobrevida , Transcriptoma/genética
15.
J Pak Med Assoc ; 69(12): 1812-1816, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31853109

RESUMO

OBJECTIVE: To investigate the genetic factor responsible for causing microcephaly and determine allelic heterogeneity of Abnormal spindle microtubule gene. METHODS: The genetic study was conducted at the Kohat University of Science and Technology, Kohat, and Gomal University, D.I.Khan, Pakistan, during 2017-18, and comprised 5 consanguineous families from South Waziristan, Kurram Agency, Karak, Bannu and Dera Ismail Khan regions of the country's Khyber Pakhtukhwa province. Blood samples from all available and cooperative family members (including normal and affected) were obtained, and molecular analysis was carried out through whole genome single nucleotide polymorphisms genotyping, exome sequencing and Sanger sequencing. RESULTS: Of the 15 patients, 9(60%) were males and 6(40%) were females. Genetic mapping revealed linkage to the MCPH5 locus which harbours the microcephaly-associated abnormal spindle-like microcephaly gene. Mutation analysis of the gene identified missense mutation c.3978G>A (p.Trp1326*) in families A, B and C, a deletion mutation c.7782_7783delGA (p.(Lys2595Serfs*6)) in family D, and a splice site defect c.2936+5G>A in family E. CONCLUSIONS: There was suggestion of strong founder effect of mutation c.3978G>A (p.Trp1326*).


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Paquistão , Adulto Jovem
16.
Hum Mutat ; 39(3): 319-332, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243349

RESUMO

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Assuntos
Microcefalia/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Pré-Escolar , Cognição , Estudos de Coortes , Família , Feminino , Estudos de Associação Genética , Geografia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/epidemiologia
17.
Clin Genet ; 92(1): 62-68, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28004384

RESUMO

Autosomal recessive primary microcephaly (MCPH) is a rare and heterogeneous genetic disorder characterized by reduced head circumference, low cognitive prowess and, in general, architecturally normal brains. As many as 14 different loci have already been mapped. We recruited 35 MCPH families in Pakistan and could identify the genetic cause of the disease in 31 of them. Using homozygosity mapping complemented with whole-exome, gene panel or Sanger sequencing, we identified 12 novel mutations in 3 known MCPH-associated genes - 9 in ASPM, 2 in MCPH1 and 1 in CDK5RAP2. The 2 MCPH1 mutations were homozygous microdeletions of 164,250 and 577,594 bp, respectively, for which we were able to map the exact breakpoints. We also identified four known mutations - three in ASPM and one in WDR62. The latter was initially deemed to be a missense mutation but we demonstrate here that it affects splicing. As to ASPM, as many as 17 out of 27 MCPH5 families that we ascertained in our sample were found to carry the previously reported founder mutation p.Trp1326*. This study adds to the mutational spectra of four known MCPH-associated genes and updates our knowledge about the genetic heterogeneity of MCPH in the Pakistani population considering its ethnic diversity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Microcefalia/epidemiologia , Microcefalia/fisiopatologia , Mutação , Paquistão/epidemiologia , Linhagem , Sequenciamento do Exoma
18.
J Pathol ; 238(1): 3-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26310200

RESUMO

Despite the important role of the gastric stem cell in tissue homeostasis and gastric carcinogenesis, its residence and identity remain poorly understood. In a recent paper in The Journal of Pathology, Vange et al suggest ASPM as a candidate stem/progenitor cell marker for oxyntic glands. Identification of ASPM was achieved by genome-wide gene expression analysis of the micro-dissected isthmus zone, where the majority of stem/progenitor cells are believed to reside. ASPM-positive cells, scattered in the proliferative isthmus region, do not express most differentiated cell markers and are largely quiescent. Together with ASPM, 11 other genes that are uniquely expressed in the isthmus zone constitute a regulatory network downstream of the core transcription factor E2F1. The authors further demonstrated that up-regulation of E2F1 and ASPM is associated with gastric cancers. This study provides novel candidates for future lineage-tracing experiments that will lead to the ultimate discovery of bona fide gastric stem cell markers. Additionally, the E2F1-ASPM axis may represent a new mechanism for gastric carcinogenesis.


Assuntos
Adenocarcinoma/patologia , Mucosa Gástrica/citologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/biossíntese , Neoplasias Gástricas/patologia , Animais , Humanos
19.
Am J Med Genet A ; 170(8): 2133-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27250695

RESUMO

Autosomal recessive primary microcephaly (MCPH) is an abnormal proliferation of neurons during brain development that leads to a small brain size but architecturally normal in most instances. Mutations in the ASPM gene have been identified to be the most prevalent. Thirty-seven patients from 30 unrelated families with a clinical diagnosis of MCPH were enrolled in this study. Screening of ASPM gene mutations was performed by targeted linkage analysis followed by direct sequencing. Thirteen protein truncating mutations of the ASPM were identified in 15 families (50%), eight of which were novel mutations. The mutations detected were eight nonsense, four frameshift, and one splice site. Two of these mutations (p.R1327* and p.R3181*) were recurrent and shared similar haplotypes suggesting founder effect. Patients with ASPM mutations had mild to severe intellectual disability and variable degrees of simplified gyral pattern and small frontal lobe. In addition, hypoplasia of corpus callosum (18 patients), mildly small cerebellar vermis (10 patients), and relatively small pons (13 patients) were found in 85.7%, 47.6%, and 61.9%, respectively. Furthermore, one patient had porencephaly and another had a small midline cyst. Epilepsy was documented in two patients (9.5%). Non-neurologic abnormalities consisted of growth retardation (four patients), and co-incidental association of oculo-cutaneous albinism (one patient). Our study expands the mutation spectrum of ASPM. Moreover, the simplified gyral pattern and small frontal lobe together with hypoplastic corpus callosum, small cerebellum and pons enable ASPM mutated patients to be distinguished. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Adolescente , Alelos , Substituição de Aminoácidos , Encéfalo/anormalidades , Criança , Pré-Escolar , Consanguinidade , Éxons , Fácies , Feminino , Ligação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino
20.
Gastroenterology ; 145(5): 1110-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896173

RESUMO

BACKGROUND & AIMS: Many patients with pancreatic ductal adenocarcinoma (PDAC) develop recurrent or metastatic diseases after surgery, so it is important to identify those most likely to benefit from aggressive therapy. Disruption of tissue microarchitecture is an early step in pancreatic tumorigenesis and a parameter used in pathology grading of glandular tumors. We investigated whether changes in gene expression during pancreatic epithelial morphogenesis were associated with outcomes of patients with PDAC after surgery. METHODS: We generated architectures of human pancreatic duct epithelial cells in a 3-dimensional basement membrane matrix. We identified gene expression profiles of the cells during different stages of tubular morphogenesis (tubulogenesis) and of PANC-1 cells during spheroid formation. Differential expression of genes was confirmed by immunoblot analysis. We compared the gene expression profile associated with pancreatic epithelial tubulogenesis with that of PDAC samples from 27 patients, as well as with their outcomes after surgery. RESULTS: We identified a gene expression profile associated with tubulogenesis that resembled the profile of human pancreatic tissue with differentiated morphology and exocrine function. Patients with PDACs with this profile fared well after surgery. Based on this profile, we established a 6-28 gene tubulogenesis-specific signature that accurately determined the prognosis of independent cohorts of patients with PDAC (total n = 128; accuracy = 81.2%-95.0%). One gene, ASPM, was down-regulated during tubulogenesis but up-regulated in human PDAC cell lines and tumor samples; up-regulation correlated with patient outcomes (Cox regression P = .0028). Bioinformatic, genetic, biochemical, functional, and clinical correlative studies showed that ASPM promotes aggressiveness of PDAC by maintaining Wnt-ß-catenin signaling and stem cell features of PDAC cells. CONCLUSIONS: We identified a gene expression profile associated with pancreatic epithelial tubulogenesis and a tissue architecture-specific signature of PDAC cells that is associated with patient outcomes after surgery.


Assuntos
Carcinoma Ductal Pancreático/patologia , Diferenciação Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Proteínas do Tecido Nervoso/fisiologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Transcriptoma/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Carcinoma Ductal Pancreático/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Modelos Animais de Doenças , Epitélio/patologia , Seguimentos , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Prognóstico , Estudos Retrospectivos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa