Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437028

RESUMO

Nanopore-based sensing platforms have transformed single-molecule detection and analysis. The foundation of nanopore translocation experiments lies in conductance measurements, yet existing models, which are largely phenomenological, are inaccurate in critical experimental conditions such as thin and tightly fitting pores. Of the two components of the conductance blockade, channel and access resistance, the access resistance is poorly modeled. We present a comprehensive investigation of the access resistance and associated conductance blockade in thin nanopore membranes. By combining a first-principles approach, multiscale modeling, and experimental validation, we propose a unified theoretical modeling framework. The analytical model derived as a result surpasses current approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework's versatility enables analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.

2.
Nano Lett ; 21(22): 9374-9380, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34726925

RESUMO

Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∼4.25 MΩ for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades.


Assuntos
Nanopartículas , Nanoporos , Polímeros
3.
Nano Lett ; 18(10): 6604-6610, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30178677

RESUMO

Ionic conductance in membrane channels exhibits a power-law dependence on electrolyte concentration ( G ∼ cα). The many scaling exponents, α, reported in the literature usually require detailed interpretations concerning each particular system under study. Here, we critically evaluate the predictive power of scaling exponents by analyzing conductance measurements in four biological channels with contrasting architectures. We show that scaling behavior depends on several interconnected effects whose contributions change with concentration so that the use of oversimplified models missing critical factors could be misleading. In fact, the presence of interfacial effects could give rise to an apparent universal scaling that hides the channel distinctive features. We complement our study with 3D structure-based Poisson-Nernst-Planck (PNP) calculations, giving results in line with experiments and validating scaling arguments. Our findings not only provide a unified framework for the study of ion transport in confined geometries but also highlight that scaling arguments are powerful and simple tools with which to offer a comprehensive perspective of complex systems, especially those in which the actual structure is unknown.


Assuntos
Canais Iônicos/química , Transporte de Íons , Nanoestruturas/química , Conformação Proteica , Algoritmos , Simulação por Computador , Difusão , Eletrólitos/química , Íons/química , Membranas/química , Modelos Moleculares , Software
4.
Cochlear Implants Int ; 23(2): 87-94, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34895078

RESUMO

OBJECTIVE: Electrode impedances play an important role in cochlear implant patient management. During clinical visits, electrode impedances are calculated from a single point voltage waveform. In the present study, multipoint electrode impedance analysis was performed to study electrode impedance and its subcomponents in patients with three different types of cochlear implant electrode arrays. DESIGN: Voltage waveforms were measured at six different time points during the cathodic phase of a biphasic pulse in forty-seven cochlear implant patients with perimodiolar, mid-scala, or lateral wall electrode arrays. Multipoint electrode impedances were used to determine access resistance and polarization impedance. RESULTS: Access resistance of approximately 5 kΩ was calculated across the three different electrode arrays. Mid-scala electrodes showed a smaller increase in impedances as a function of pulse duration compared to the other electrodes. Patients with lower impedances showed higher capacitance and lower resistance, suggesting that differences in electrochemical reaction at the electrodes' surface can influence impedances in cochlear implants. CONCLUSIONS: Analysis of cochlear implant electrode impedances and their subcomponents provides valuable information about resistance to the flow of current between stimulating and return electrodes, and build an understanding of the contribution of electrochemical processes used to deliver electrical stimulation to the auditory nerve.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/cirurgia , Nervo Coclear , Impedância Elétrica , Eletrodos , Eletrodos Implantados , Humanos
5.
J Assoc Res Otolaryngol ; 23(1): 95-118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686938

RESUMO

Acoustic hearing can be preserved after cochlear implant (CI) surgery, allowing for combined electric-acoustic stimulation (EAS) and superior speech understanding compared to electric-only hearing. Among patients who initially retain useful acoustic hearing, 30-40 % experience a delayed hearing loss that occurs 3 or more months after CI activation. Increases in electrode impedances have been associated with delayed loss of residual acoustic hearing, suggesting a possible role of intracochlear inflammation/fibrosis as reported by Scheperle et al. (Hear Res 350:45-57, 2017) and Shaul et al. (Otol Neurotol 40(5):e518-e526, 2019). These studies measured only total impedance. Total impedance consists of a composite of access resistance, which reflects resistance of the intracochlear environment, and polarization impedance, which reflects resistive and capacitive properties of the electrode-electrolyte interface as described by Dymond (IEEE Trans Biomed Eng 23(4):274-280, 1976) and Tykocinski et al. (Otol Neurotol 26(5):948-956, 2005). To explore the role of access and polarization impedance components in loss of residual acoustic hearing, these measures were collected from Nucleus EAS CI users with stable acoustic hearing and subsequent precipitous loss of hearing. For the hearing loss group, total impedance and access resistance increased over time while polarization impedance remained stable. For the stable hearing group, total impedance and access resistance were stable while polarization impedance declined. Increased access resistance rather than polarization impedance appears to drive the increase in total impedances seen with loss of hearing. Moreover, access resistance has been correlated with intracochlear fibrosis/inflammation in animal studies as observed by Xu et al. (Hear Res 105(1-2):1-29, 1997) and Tykocinski et al. (Hear Res 159(1-2):53-68, 2001). These findings thus support intracochlear inflammation as one contributor to loss of acoustic hearing in our EAS CI population.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Percepção da Fala , Estimulação Acústica , Acústica , Animais , Surdez/cirurgia , Impedância Elétrica , Estimulação Elétrica , Fibrose , Audição , Perda Auditiva/reabilitação , Humanos , Inflamação/cirurgia
6.
ACS Nano ; 15(1): 1155-1166, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33337129

RESUMO

Inefficient charge injection and transport across the electrode/semiconductor contact edge severely limits the device performance of coplanar organic thin-film transistors (OTFTs). To date, various approaches have been implemented to address the adverse contact problems of coplanar OTFTs. However, these approaches mainly focused on reducing the injection resistance and failed to effectively lower the access resistance. Here, we demonstrate a facile strategy by utilizing the blurring effect during the deposition of metal electrodes, to significantly reduce the access resistance. We find that the transition region formed by the blurring behavior can continuously tune the molecular packing and thin-film growth of organic semiconductors across the contact edge, as well as provide continuously distributed gap states for carrier tunnelling. Based on this versatile strategy, the fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) coplanar OTFT shows a high field-effect mobility of 6.08 cm2 V-1 s-1 and a low contact resistance of 2.32 kΩ cm, comparable to the staggered OTFTs fabricated simultaneously. Our work addresses the crucial impediments for further reducing the contact resistance in coplanar OTFTs, which represents a significant step of contact injection engineering in organic devices.

7.
Biosens Bioelectron ; 94: 312-320, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319897

RESUMO

A variety of electrical activities occur depending on the functional state in each section of the gut, but the application of microelectrode array (MEA) is rather limited. We thus developed a dialysis membranes-enforced technique to investigate diverse and complex spatio-temporal electrical activity in the gut. Muscle sheets isolated from the gastrointestinal (GI) tract of mice along with a piece of dialysis membrane were woven over and under the strings to fix them to the anchor rig, and mounted on an 8×8 MEA (inter-electrode distance=150µm). Small molecules (molecular weight <12,000) were exchanged through the membrane, maintaining a physiological environment. Low impedance MEA was used to measure electrical signals in a wide frequency range. We demonstrated the following examples: 1) pacemaker activity-like potentials accompanied by bursting spike-like potentials in the ileum; 2) electrotonic potentials reflecting local neurotransmission in the ileum; 3) myoelectric complex-like potentials consisting of slow and rapid oscillations accompanied by spike potentials in the colon. Despite their limited spatial resolution, these recordings detected transient electric activities that optical probes followed with difficulty. In Addition, propagation of pacemaker-like potential was visualized in the stomach and ileum. These results indicate that the dialysis membrane-enforced technique largely extends the application of MEA, probably due to stabilisation of the access resistance between each sensing electrode and a reference electrode and improvement of electric separation between sensing electrodes. We anticipate that this technique will be utilized to characterise spatio-temporal electrical activities in the gut in health and disease.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrofisiologia/instrumentação , Membranas Artificiais , Potenciais de Ação/fisiologia , Animais , Colo/fisiologia , Diálise/instrumentação , Íleo/fisiologia , Camundongos , Microeletrodos
8.
FEBS Lett ; 591(21): 3481-3492, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28963849

RESUMO

Tight regulation of pH is critical for the structure and function of cells and organelles. The pH environment changes dramatically along the endocytic pathway, an internalization transport process that is 'hijacked' by many intracellularly active bacterial exotoxins, including the anthrax toxin. Here, we investigate the role of pH on single-channel properties of the anthrax toxin protective antigen (PA63 ). Using conductance and current noise analysis, blocker binding, ion selectivity, and poly(ethylene glycol) partitioning measurements, we show that the channel exists in two different open states ('maximum' and 'main') at pH ≥ 5.5, while only a maximum conductance state is detected at pH < 5.5. We describe two substantially distinct patterns of PA63 conductance dependence on KCl concentration uncovered at pH 6.5 and 4.5.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Endossomos/metabolismo , Canais Iônicos/metabolismo , Animais , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Linhagem Celular , Endossomos/química , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Transporte de Íons
9.
ACS Nano ; 11(10): 10392-10400, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28930428

RESUMO

Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

10.
ACS Nano ; 10(1): 803-9, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26641133

RESUMO

Resistive pulse sensing with nanopores having a low thickness-to-diameter aspect-ratio structure is expected to enable high-spatial-resolution analysis of nanoscale objects in a liquid. Here we investigated the sensing capability of low-aspect-ratio pore sensors by monitoring the ionic current blockades during translocation of polymeric nanobeads. We detected numerous small current spikes due to partial occlusion of the pore orifice by particles diffusing therein reflecting the expansive electrical sensing zone of the low-aspect-ratio pores. We also found wide variations in the ion current line-shapes in the particle capture stage suggesting random incident angle of the particles drawn into the pore. In sharp contrast, the ionic profiles were highly reproducible in the post-translocation regime by virtue of the spatial confinement in the pore that effectively constricts the stochastic capture dynamics into a well-defined ballistic motion. These results, together with multiphysics simulations, indicate that the resistive pulse height is highly dependent on the nanoscopic single-particle trajectories involved in ultrathin pore sensors. The present finding indicates the importance of regulating the translocation pathways of analytes in low-aspect-ratio pores for improving the discriminability toward single-bioparticle tomography in liquid.

11.
Nanomaterials (Basel) ; 6(5)2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28335214

RESUMO

This work proposes a novel geometry field effect transistor with graphene as a channel-graphene field-effect transistor (GFET), having a hybrid contact that consists of an ohmic source/drain and its extended part towards the gate, which is capacitively coupled to the channel. The ohmic contacts are used for direct current (DC) biasing, whereas their capacitive extension reduces access region length and provides the radio frequency (RF) signal a low impedance path. Minimization of the access region length, along with the paralleling of ohmic contact's resistance and resistive part of capacitively coupled contact's impedance, lower the overall source/drain resistance, which results in an increase in current gain cut-off frequency, fT. The DC and high-frequency characteristics of the two chosen conventional baseline GFETs, and their modified versions with proposed hybrid contacts, have been extensively studied, compared, and analyzed using numerical and analytical techniques.

12.
Cochlear Implants Int ; 15(4): 191-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23998484

RESUMO

OBJECTIVES: Electrode impedance increases following implantation and undergoes transitory reduction with onset of electrical stimulation. The studies in this paper measured the changes in access resistance and polarization impedance in vivo before and following electrical stimulation, and recorded the time course of these changes. DESIGN: Impedance measures recorded in (a) four cats following 6 months of cochlear implant use, and (b) three cochlear implant recipients with 1.5-5 years cochlear implant experience. RESULTS: Both the experimental and clinical data exhibited a reduction in electrode impedance, 20 and 5% respectively, within 15-30 minutes of stimulation onset. The majority of these changes occurred through reduction in polarization impedance. Cessation of stimulation was followed by an equivalent rise in impedance measures within 6-12 hours. CONCLUSIONS: Stimulus-induced reductions in impedance exhibit a rapid onset and are evident in both chronic in vivo models tested, even several years after implantation. Given the impedance changes were dominated by the polarization component, these findings suggest that the electrical stimulation altered the electrode surface rather than the bulk tissue and fluid in the cochlea.


Assuntos
Testes de Impedância Acústica , Implante Coclear , Implantes Cocleares , Eletrodos Implantados , Adulto , Animais , Limiar Auditivo , Gatos , Cóclea/fisiologia , Impedância Elétrica , Humanos , Modelos Animais , Desenho de Prótese , Gânglio Espiral da Cóclea/fisiologia , Fatores de Tempo
13.
Neuroscience ; 250: 755-72, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23876326

RESUMO

Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.


Assuntos
Aplysia/fisiologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Mitocôndrias/fisiologia , Células Neuroendócrinas/fisiologia , Alquilantes/farmacologia , Animais , Comportamento Animal/fisiologia , Cálcio/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Ovos , Capacitância Elétrica , Retículo Endoplasmático/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Imuno-Histoquímica , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Neuropeptídeos/biossíntese , Técnicas de Patch-Clamp , RNA de Cadeia Dupla/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa