Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Toxicol ; 39(2): 991-1000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994395

RESUMO

Breast cancer is the most common cancer in the world, with metastasis being one of the leading causes of death among patients. The acidic environment of breast cancer tissue promotes tumor cell invasion and migration by inducing epithelial-mesenchymal transformation (EMT) in tumor cells, but the exact mechanisms are not yet fully understood. This study investigated the expression of acid-sensitive ion channel 1a (ASIC1a) in breast cancer tissue samples and explored the mechanisms by which ASIC1a mediates the promotion of EMT in breast cancer cells in an acidic microenvironment through in vivo and in vitro experiments. The results showed that first, the expression of ASIC1a was significantly upregulated in breast cancer tissue and was correlated with the TNM (tumor node metastasis) staging of breast cancer. Furthermore, ASIC1a expression was higher in tumors with lymph node metastasis than in those without. Second, the acidic microenvironment promoted [Ca2+ ]i influx via ASIC1a activation and regulated the expression of ß-catenin, Vimentin, and E-cadherin, thus promoting EMT in breast cancer cells. Inhibition of ASIC1a activation with PcTx-1 could suppress EMT in breast cancer cells. Finally, in vivo studies also showed that inhibition of ASIC1a could reduce breast cancer metastasis, invasion, and EMT. This study suggests that ASIC1a expression is associated with breast cancer staging and metastasis. Therefore, ASIC1a may become a new breast cancer biomarker, and the elucidation of the mechanism by which ASIC1a promotes EMT in breast cancer under acidic microenvironments provides evidence for the use of ASIC1a as a molecular target for breast cancer treatment.


Assuntos
Neoplasias da Mama , beta Catenina , Humanos , Feminino , beta Catenina/metabolismo , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais , Via de Sinalização Wnt , Canais Iônicos/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Microambiente Tumoral
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612396

RESUMO

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.


Assuntos
Amilorida , Benzamidinas , Humanos , Simulação de Acoplamento Molecular , Canais Iônicos Sensíveis a Ácido , Dor
3.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791305

RESUMO

The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control.


Assuntos
Neurônios Motores , Animais , Neurônios Motores/fisiologia , Neurônios Motores/metabolismo , Ratos , Núcleos do Trigêmeo/fisiologia , Núcleos do Trigêmeo/metabolismo , Fenômenos Eletrofisiológicos
4.
Glob Chang Biol ; 29(21): 6066-6076, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609877

RESUMO

Acidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface-water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large-scale assessments of long-term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid-sensitive lakes in Norway spanning 24 years (1997-2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid-sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long-term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.


Assuntos
Lagos , Zooplâncton , Animais , Zooplâncton/fisiologia , Ecossistema , Cálcio , Concentração de Íons de Hidrogênio
5.
BMC Cancer ; 22(1): 778, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35840921

RESUMO

A major challenge in the treatment of liver cancer is that a large proportion of patients fail to achieve long-term disease control, with death from liver cancer cell migration and invasion. Acid-sensitive ion channel 1α (ASIC1α) is involved in the migration, invasion, and proliferation of liver cancer cells. Therefore, we explored the mechanism of ASIC1α-mediated liver cancer cell migration and invasion. We determined the levels of ASIC1α by western blotting and immunofluorescence in HepG2 and SK-Hep1 cells cultured in various acidic conditions. In addition, wound healing assay, transwell invasion assay, and MTT assay were conducted to assess the migration, invasion, and proliferation abilities of liver cancer cells. Western blotting was conducted to determine the levels of MMP2, MMP9, ASIC1α, p-PI3Kp85, t-PI3Kp85, p-AKT(Ser473), t-AKT, p-mTOR (Ser2448), t-mTOR. We first found that the levels of ASIC1α in the HepG2 and SK-Hep1 cells in acidic conditions (pH 6.5) were significantly increased. Inhibition and knockdown of ASIC1α down-regulated MMP-2/9 expression and inhibited the migration, invasion, and proliferation of HepG2 and SK-Hep1 cells; overexpression of ASIC1α had the opposite effect. We further demonstrated that ASIC1α up-regulates MMP-2/9 via activation of the PI3K/AKT/mTOR pathway, thereby promoting migration, invasion, and proliferation of liver cancer cells. Overexpression of MMP-2/9 and activation of AKT reversed these effects on liver cancer cells caused by inhibition of ASIC1α. We conclude that ASIC1α can regulate migration, invasion, and proliferation of liver cancer cells through the MMP-2/9/PI3K/AKT/mTOR pathway. These observations may provide a new reference for liver cancer chemotherapy.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias Hepáticas , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Canais Iônicos Sensíveis a Ácido/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
J Fluoresc ; 32(1): 95-108, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562204

RESUMO

In this study, we investigated the solvent effects on the photophysical properties of α,ω-di(4-pyridyl)polyenes 1-5 having 1-5 double bonds. The solution photoproperties depend strongly on conjugation chain length. The absorption maximum (λa) of dipyridylethylene 1 is observed at around 290 nm and only slightly redshifts as the solvent polarity increases, whereas its fluorescence maximum (λf) redshifts from 368 nm in hexane to 403 nm in acetonitrile. Although 1 is a centrosymmetric molecule, its fluorescence energy linearly correlates with the Onsager solvent polarity function f(ε) - f(n2) = (ε - 1)/(2ε + 1)-(n2 - 1)/(2n2 + 1), indicating that the emission originates from an intramolecular charge transfer (CT) excited state. Exceptionally, λf in methanol is largely blue-shifted to 341 nm from those in other aprotic solvents. The fluorescence solvatochromism of longer polyenes 2-5 is much less significant than that of 1. Upon protonation and N-alkylation, both the absorption and fluorescence spectra of all five compounds are red-shifted in methanol. The largest shifts in λa and λf on protonation are observed for pentaene 5 (73 nm) and diene 2 (57 nm), respectively.

7.
J Neurophysiol ; 125(4): 1501-1516, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689489

RESUMO

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.


Assuntos
Dendritos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Modelos Teóricos , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Células Piramidais/fisiologia , Tratos Piramidais/fisiologia , Animais , Impedância Elétrica , Humanos
8.
J Hepatol ; 74(2): 428-441, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33342564

RESUMO

Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Ductos Biliares/fisiologia , Bile , Epitélio/fisiologia , Desequilíbrio Ácido-Base/metabolismo , Bicarbonatos/metabolismo , Bile/química , Bile/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Via Secretória
9.
J Neuroinflammation ; 18(1): 96, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874962

RESUMO

BACKGROUND: Postherpetic neuralgia (PHN) is a devastating complication after varicella-zoster virus infection. Brain-derived neurotrophic factor (BDNF) has been shown to participate in the pathogenesis of PHN. A truncated isoform of the tropomyosin receptor kinase B (TrkB) receptor TrkB.T1, as a high-affinity receptor of BDNF, is upregulated in multiple nervous system injuries, and such upregulation is associated with pain. Acid-sensitive ion channel 3 (ASIC3) is involved in chronic neuropathic pain, but its relation with BDNF/TrkB.T1 in the peripheral nervous system (PNS) during PHN is unclear. This study aimed to investigate whether BDNF/TrkB.T1 contributes to PHN through regulating ASIC3 signaling in dorsal root ganglia (DRGs). METHODS: Resiniferatoxin (RTX) was used to induce rat PHN models. Mechanical allodynia was assessed by measuring the paw withdrawal thresholds (PWTs). Thermal hyperalgesia was determined by detecting the paw withdrawal latencies (PWLs). We evaluated the effects of TrkB.T1-ASIC3 signaling inhibition on the behavior, neuronal excitability, and inflammatory response during RTX-induced PHN. ASIC3 short hairpin RNA (shRNA) transfection was used to investigate the effect of exogenous BDNF on inflammatory response in cultured PC-12 cells. RESULTS: RTX injection induced mechanical allodynia and upregulated the protein expression of BDNF, TrkB.T1, ASIC3, TRAF6, nNOS, and c-Fos, as well as increased neuronal excitability in DRGs. Inhibition of ASIC3 reversed the abovementioned effects of RTX, except for BDNF and TrkB.T1 protein expression. In addition, inhibition of TrkB.T1 blocked RTX-induced mechanical allodynia, activation of ASIC3 signaling, and hyperexcitability of neurons. RTX-induced BDNF upregulation was found in both neurons and satellite glia cells in DRGs. Furthermore, exogenous BDNF activated ASIC3 signaling, increased NO level, and enhanced IL-6, IL-1ß, and TNF-α levels in PC-12 cells, which was blocked by shRNA-ASIC3 transfection. CONCLUSION: These findings demonstrate that inhibiting BDNF/TrkB.T1 reduced inflammation, decreased neuronal hyperexcitability, and improved mechanical allodynia through regulating the ASIC3 signaling pathway in DRGs, which may provide a novel therapeutic target for patients with PHN.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diterpenos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Neuralgia Pós-Herpética/metabolismo , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia , Masculino , Neuralgia Pós-Herpética/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
10.
Chemistry ; 26(44): 10005-10013, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374463

RESUMO

Besides their widespread use in coordination chemistry, 2,2'-bipyridines are known for their ability to undergo cis-trans conformational changes in response to metal ions and acids, which has been primarily investigated at the molecular level. However, the exploitation of such conformational switching in self-assembly has remained unexplored. In this work, the use of 2,2'-bipyridines as acid-responsive conformational switches to tune supramolecular polymerization processes has been demonstrated. To achieve this goal, we have designed a bipyridine-based linear bolaamphiphile, 1, that forms ordered supramolecular polymers in aqueous media through cooperative aromatic and hydrophobic interactions. Interestingly, addition of acid (TFA) induces the monoprotonation of the 2,2'-bipyridine moiety, leading to a switch in the molecular conformation from a linear (trans) to a V-shaped (cis) state. This increase in molecular distortion along with electrostatic repulsions of the positively charged bipyridine-H+ units attenuate the aggregation tendency and induce a transformation from long fibers to shorter thinner fibers. Our findings may contribute to opening up new directions in molecular switches and stimuli-responsive supramolecular materials.

11.
J Dairy Sci ; 103(9): 7898-7907, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622602

RESUMO

Intracellular pH homeostasis through the extrusion of a proton by F0F1-ATPase is one of the key mechanisms used by lactic acid bacteria in response to acid stress, and also influences their post-fermentation acidification. In this study, the genotypic and phenotypic stability of a low post-fermentation acidification (LPA) mutant (designated as DGCC12411m) of Lactobacillus plantarum DGCC12411 was assessed. Compared with its mother strain, the pH of DGCC12411m in De Man, Rogosa, and Sharpe (MRS) broth after 48-h cultivation was 0.35 pH units higher. Incorporation of DGCC12411m in yogurt stored at ambient temperature (ambient yogurt) showed a reduced post-fermentation acidification during storage at 25°C for 120 d. Whole-genome sequencing analysis showed a SNP mutation (GGT > GAT at positions 505 to 507) in DGCC12411m, which resulted in the substitution of a highly conserved glycine residue by aspartic acid at the Walker A motif of the F0F1-ATPase α-subunit. However, degeneration of the LPA phenotype was observed after 5 passages of DGCC12411m in MRS broth. Analysis of DNA sequencing on both the whole population and the isolates showed that a back mutation occurred at the SNP site (GAT changed back to GGT) over the passaging, and the reversion gradually increased from a ratio of 10.8% at P5 to 60.0% at P10. We also found that the LPA phenotype stability of DGCC12411m was improved by supplementing 0.1 M potassium phosphate buffer to the growth medium as well as by reducing the inoculation rate of DGCC12411m to 2% (vol/vol). Such LPA Lactobacillus strains have potential for use as starter cultures in fermented foods with less change in acidity during shelf-life storage.


Assuntos
Microbiologia de Alimentos , Lactobacillus plantarum , Animais , Meios de Cultura/metabolismo , Fermentação , Homeostase , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mutação , Iogurte/microbiologia
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(1): 16-23, 2020 Feb 28.
Artigo em Chinês | MEDLINE | ID: mdl-32131935

RESUMO

Objective To explore the mechanism of obstructive sleep apnea(OSA) by assessing the association between human TWIK-related acid-sensitive K + channel-1(TASK-1) gene and OSA. Methods A total of 164 patients with severe OSA and 171 patients without OSA were recruited from the Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region,China,from April to December 2016.Two single nucleotide polymorphisms(rs1275988 and rs2586886) in the TASK-1 gene were selected and genotyped using a Kompetitive Allele Specific PCR genotyping system. Results In patients with blood potassium <3.95 mmol/L,the distribution of rs1275988 alleles(G vs.A)(χ 2=4.474,P=0.034) and recessive model(GG+GA vs.AA)(χ 2=4.327,P=0.038) showed significant differences between severe and non-OSA groups.The distribution of rs2586886 alleles(G vs.A)(χ 2=6.345,P=0.012) and dominant model(AA+GA vs.GA)(χ 2=4.431,P=0.035) showed significant differences between severe and non-OSA groups.The Logistic regression analysis showed that the GG genotype was a risk factor for OSA patients with blood potassium <3.95 mmol/L(OR=7.854,95% CI:1.710-36.000,P=0.008;OR=8.849,95% CI:1.816-43.117,P=0.007). Conclusions Both the GG genotypes of rs1275988 and rs2586886 in the TASK-1 gene may be potential risk factors in severe OSA patients with blood potassium <3.95 mmol/L.Serum potassium>3.95 mmol/L in patients with TASK-1 GG genotype may be conducive to reducing the incidence of severe OSA.


Assuntos
Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Apneia Obstrutiva do Sono/genética , Alelos , Estudos de Casos e Controles , China , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Potássio/sangue , Fatores de Risco
13.
Chemistry ; 25(39): 9230-9236, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30937962

RESUMO

The supramolecular polymerization of an acid-sensitive pyridyl-based ligand (L1 ) bearing a photoresponsive azobenzene moiety was elucidated by mechanistic studies. Addition of trifluoroacetic acid (TFA) led to the transformation of the antiparallel H-bonded fibers of L1 in methylcyclohexane into superhelical braid-like fibers stabilized by H-bonding of parallel-stacked monomer units. Interestingly, L1 dimers held together by unconventional pyridine-TFA N⋅⋅⋅H⋅⋅⋅O bridges represent the main structural elements of the assembly. UV-light irradiation caused a strain-driven disassembly and subsequent aggregate reconstruction, which ultimately led to short fibers. The results allowed to understand the mechanism of mutual influence of acid and light stimuli on supramolecular polymerization processes, thus opening up new possibilities to design advanced stimuli-triggered supramolecular systems.

14.
Molecules ; 24(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609724

RESUMO

Activated macrophages play a vital role in rheumatoid arthritis (RA) pathophysiology. CD44 is an overexpressed receptor on activated macrophages that is a potential target site for RA treatment. In this study, we prepared hyaluronic acid (HA) coated acid-sensitive polymeric nanoparticles (HAPNPs) composed of egg phosphatidylcholine, polyethylenimine, and poly (cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) loaded with dexamethasone (Dex) for the treatment of RA. PCADK was used to form polymeric cores because of its acid-sensitivity. The HAPNPs were about 150 nm in size and had a zeta potential of -2.84 mV. The release rate of Dex from HAPNPs/Dex in vitro increased markedly when the pH decreased from 7.4 to 4.5, indicating that the HAPNPs were pH-sensitive. In a cellular uptake study, stronger fluorescence signals were observed in activated macrophages treated with HAPNPs, suggesting that HAPNPs could be effective nanodevices target to activated macrophages. In rats with adjuvant-induced arthritis, HAPNPs could inhibited the progression of RA. Taken together, these results suggest that the HAPNPs could be useful in RA therapy.


Assuntos
Artrite Experimental/tratamento farmacológico , Dexametasona/administração & dosagem , Portadores de Fármacos/química , Ácido Hialurônico/química , Terapia de Alvo Molecular , Nanopartículas/química , Animais , Anti-Inflamatórios/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Receptores de Hialuronatos/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Tamanho da Partícula , Fosfatidilcolinas/química , Polietilenoimina/química , Polímeros/química , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
15.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G592-G601, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746171

RESUMO

We have previously demonstrated that satiety sensing vagal afferent neurons are less responsive to meal-related stimuli in obesity because of reduced electrical excitability. As leak K+ currents are key determinants of membrane excitability, we hypothesized that leak K+ currents are increased in vagal afferents during obesity. Diet-induced obesity was induced by feeding C57Bl/6J mice a high-fat diet (HFF) (60% energy from fat) for 8-10 wk. In vitro extracellular recordings were performed on jejunal afferent nerves. Whole cell patch-clamp recordings were performed on mouse nodose ganglion neurons. Leak K+ currents were isolated using ion substitution and pharmacological blockers. mRNA for TWIK-related acid-sensitive K+ (TASK) subunits was measured using quantitative real-time PCR. Intestinal afferent responses to nutrient (oleate) and non-nutrient (ATP) stimuli were significantly decreased in HFF mice. Voltage clamp experiments revealed the presence of a voltage-insensitive resting potassium conductance that was increased by external alkaline pH and halothane, known properties of TASK currents. In HFF neurons, leak K+ current was approximately doubled and was reduced by TASK1 and TASK3 inhibitors. The halothane sensitive current was similarly increased. Quantitative PCR revealed the presence of mRNA encoding TASK1 (KCNK3) and TASK3 (KCNK9) channels in nodose neurons. TASK3 transcript was significantly increased in HFF mice. The reduction in vagal afferent excitability in obesity is due in part to an increase of resting (leak) K+ conductance. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a therapeutic target for obesity treatment. NEW & NOTEWORTHY This study characterized the electrophysiological properties and gene expression of the TWIK-related acid-sensitive K+ (TASK) channel in vagal afferent neurons. TASK conductance was increased and contributed to decreased excitability in diet-induced obesity. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a promising therapeutic target.


Assuntos
Potenciais de Ação , Neurônios Aferentes/metabolismo , Obesidade/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Nervo Vago/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Nervo Vago/fisiologia
16.
Biochim Biophys Acta Gen Subj ; 1861(8): 2007-2019, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28483640

RESUMO

Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl- channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl- channels, however the nature of these Cl- channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl- current at extracellular pH7.4. This constitutive Cl- current was more permeable to larger anions (Eisenman sequence I; I->Br-≥Cl-) and was substantially inhibited by >100mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl- current was blocked by NPPB, along with other Cl- channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl- current. This acid-induced Cl- current was also anion permeable (I->Br->Cl-), but was distinguished from the constitutive Cl- current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl- current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl- currents are unique and provide the mechanisms to account for the Cl- efflux previously speculated to be present in MDCT cells.


Assuntos
Canais de Cloreto/fisiologia , Túbulos Renais Distais/metabolismo , Animais , Células Cultivadas , Cloretos/metabolismo , Concentração de Íons de Hidrogênio , Camundongos
17.
Clin Sci (Lond) ; 130(9): 643-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993052

RESUMO

The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized.


Assuntos
Sistema Cardiovascular/metabolismo , Terapia de Alvo Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Humanos
18.
Mol Pharm ; 13(4): 1413-29, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26977718

RESUMO

We report the synthesis of an amphiphilic triblock copolymer composed of a hydrophilic poly(ethylene glycol) (PEG) block, a central poly(acrylic acid) (PAA) block, and a hydrophobic poly(methyl methacrylate) (PMMA) block using atom transfer radical polymerization technique. We examined the self-assembly of PEG-b-PAA-b-PMMA copolymers in aqueous solutions forming nanosized micelles and their ability to encapsulate hydrophobic guest molecules such as Nile Red (NR) dye and cabazitaxel (CTX, an anticancer drug). We used 2,2ß'-(propane-2,2-diylbis(oxy))-diethanamine to react with the carboxylic acid groups of the central PAA block forming acid-labile, shell cross-linked micelles (SCLM). We investigated the loading efficiency and release of different guest molecules from non-cross-linked micelles (NSCLM) and shell cross-linked micelles (SCLM) prepared by reacting 50% (SCLM-50) and 100% (SCLM-100) of the carboxylic acid groups in the PAA in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions as a function of time. We examined the uptake of NR-loaded NSCLM, SCLM-50, and SCLM-100 micelles into PC-3 and C4-2B prostate cancer cells and the effect of different micelle compositions on membrane fluidity of both cell lines. We also investigated the effect of CTX-loaded NSCLM, SCLM-50, and SCLM-100 micelles on the viability of PC-3 and C4-2B cancer cells compared to free CTX as a function of drug concentration. Results show that PEG-b-PAA-b-PMMA polymers form micelles at concentrations ≥11 µg/mL with an average size of 40-50 nm. CTX was encapsulated in PEG-b-PAA-b-PMMA micelles with 55% loading efficiency in NSCLM. In vitro release studies showed that 30% and 85% of the loaded CTX was released from SCLM-50 micelles in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions over 30 h, confirming micelles' sensitivity to solution pH. Results show uptake of NSCLM and SCLM into prostate cancer cells delivering their chemotherapeutic cargo, which triggered efficient cancer cell death. PEG-b-PAA-b-PMMA micelles were not hemolytic and did not cause platelet aggregation, which indicate their biocompatibility.


Assuntos
Micelas , Taxoides/administração & dosagem , Taxoides/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Taxoides/efeitos adversos
19.
J Enzyme Inhib Med Chem ; 31(6): 1381-5, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26899912

RESUMO

There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Secas , Expressão Ectópica do Gene , Inibidores Enzimáticos/farmacologia , Nicotiana/química , Vacúolos/química , beta-Frutofuranosidase/antagonistas & inibidores
20.
Am J Physiol Heart Circ Physiol ; 308(2): H126-34, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437921

RESUMO

Atrial fibrillation (AF) is a common arrhythmia with significant morbidities and only partially adequate therapeutic options. AF is associated with atrial remodeling processes, including changes in the expression and function of ion channels and signaling pathways. TWIK protein-related acid-sensitive K+ channel (TASK)-1, a two-pore domain K+ channel, has been shown to contribute to action potential repolarization as well as to the maintenance of resting membrane potential in isolated myocytes, and TASK-1 inhibition has been associated with the induction of perioperative AF. However, the role of TASK-1 in chronic AF is unknown. The present study investigated the function, expression, and phosphorylation of TASK-1 in chronic AF in atrial tissue from chronically paced canines and in human subjects. TASK-1 current was present in atrial myocytes isolated from human and canine hearts in normal sinus rhythm but was absent in myocytes from humans with AF and in canines after the induction of AF by chronic tachypacing. The addition of phosphatase to the patch pipette rescued TASK-1 current from myocytes isolated from AF hearts, indicating that the change in current is phosphorylation dependent. Western blot analysis showed that total TASK-1 protein levels either did not change or increased slightly in AF, despite the absence of current. In studies of perioperative AF, we have shown that phosphorylation of TASK-1 at Thr383 inhibits the channel. However, phosphorylation at this site was unchanged in atrial tissue from humans with AF or in canines with chronic pacing-induced AF. We conclude that phosphorylation-dependent inhibition of TASK-1 is associated with AF, but the phosphorylation site responsible for this inhibition remains to be identified.


Assuntos
Potenciais de Ação , Fibrilação Atrial/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Processamento de Proteína Pós-Traducional , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa