Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39008063

RESUMO

PURPOSE: Fibroblast Activation Protein (FAP) is an emerging theranostic target that is highly expressed on cancer-associated fibroblasts and on certain tumor cells including sarcoma. We investigated the anti-tumor efficacy of [225Ac]Ac-FAPI-46 as monotherapy or in combination with immune checkpoint blockade (ICB) in immunocompetent murine models of sarcoma sensitive or resistant to ICB. METHODS: [68Ga]Ga- and [225Ac]Ac-FAPI-46 were tested in subcutaneous FAP+ FSA fibrosarcoma bearing C3H/Sed/Kam mice. The efficacy of up to three cycles of 60 kBq [225Ac]Ac-FAPI-46 was evaluated as monotherapy and in combination with an anti-PD-1 antibody. Efficacy of [225Ac]Ac-FAPI-46 and/or ICB was further compared in FAP-overexpressing FSA (FSA-F) tumors that were sensitive to ICB or rendered ICB-resistant by tumor-induction in the presence of Abatacept. RESULTS: [225Ac]Ac-FAPI-46 was well tolerated up to 3 × 60 kBq but had minimal effect on FSA tumor growth. The combination of three cycles [225Ac]Ac-FAPI-46 and ICB resulted in growth delay in 55% of mice (6/11) and partial tumor regression in 18% (2/11) of mice. In FSA-F tumors with FAP overexpression, both [225Ac]Ac-FAPI-46 and ICB were effective without additional benefits from the combination. In locally immunosuppressed and ICB resistant FAP-F tumors, however, [225Ac]Ac-FAPI-46 restored responsiveness to ICB, resulting in significant tumor regression and tumor-free survival of 56% of mice in the combination group up to 60 days post treatment. CONCLUSION: [225Ac]Ac-FAPI-46 efficacy is correlated with tumoral FAP expression levels and can restore responsiveness to PD-1 ICB. These data illustrate that careful patient selection based on target expression and rationally designed combination therapies are critically important to maximize the therapeutic impact of FAP-targeting radioligands.

2.
Eur J Nucl Med Mol Imaging ; 51(9): 2649-2662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641714

RESUMO

Alpha-particle radionuclide-antibody conjugates are being clinically evaluated against solid tumors even when they moderately express the targeted markers. At this limit of lower tumor-absorbed doses, to maintain efficacy, the few(er) intratumorally delivered alpha-particles need to traverse/hit as many different cancer cells as possible. We complement antibody-radioconjugate therapies with a separate nanocarrier delivering a fraction of the same total injected radioactivity to tumor regions geographically different than those affected by targeting antibodies; these carrier-cocktails collectively distribute the alpha-particle emitters better. METHODS: The efficacy of actinium-225 delivered by our carrier-cocktails was assessed in vitro and on mice with orthotopic MDA-MB-436 and/or MDA-MB-231 triple-negative breast cancers and/or an ectopic BxPC3 pancreatic cancer. Cells/tumors were chosen to express low-to-moderate levels of HER1, as model antibody-targeted marker. RESULTS: Independent of cell line, antibody-radioconjugates were most lethal on cell monolayers. On spheroids, with radii greater than alpha-particles' range, carrier-cocktails improved killing efficacy (p < 0.0500). Treatment with carrier-cocktails decreased the MDA-MB-436 and MDA-MB-231 orthotopic tumor volumes by 73.7% and 72.1%, respectively, relative to treatment with antibody-radioconjugates alone, at same total injected radioactivity; these carrier-cocktails completely eliminated formation of spontaneous metastases vs. 50% and 25% elimination in mice treated with antibody-radioconjugates alone. In BxPC3 tumor-bearing mice, carrier-cocktails increased the median survival to 25-26 days (in male-female animals) vs. 20-21 days of mice treated with antibody-radioconjugates alone (vs. 17 days for non-treated animals). Survival with carrier-cocktail radiotherapy was further prolonged by pre-injecting low-dose, standard-of-care, gemcitabine (p = 0.0390). CONCLUSION: Tumor-agnostic carrier-cocktails significantly enhance the therapeutic efficacy of existing alpha-particle radionuclide-antibody treatments.


Assuntos
Actínio , Partículas alfa , Animais , Actínio/química , Actínio/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Humanos , Partículas alfa/uso terapêutico , Feminino , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Biomarcadores Tumorais/metabolismo , Portadores de Fármacos/química
3.
Eur J Nucl Med Mol Imaging ; 51(7): 1965-1980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676735

RESUMO

Preclinical studies are essential for effectively evaluating TAT radiopharmaceuticals. Given the current suboptimal supply chain of these radionuclides, animal studies must be refined to produce the most translatable TAT agents with the greatest clinical potential. Vector design is pivotal, emphasizing harmonious physical and biological characteristics among the vector, target, and radionuclide. The scarcity of alpha-emitting radionuclides remains a significant consideration. Actinium-225 and lead-212 appear as the most readily available radionuclides at this stage. Available animal models for researchers encompass xenografts, allografts, and PDX (patient-derived xenograft) models. Emerging strategies for imaging alpha-emitters are also briefly explored. Ultimately, preclinical research must address two critical aspects: (1) offering valuable insights into balancing safety and efficacy, and (2) providing guidance on the optimal dosing of the TAT agent.


Assuntos
Partículas alfa , Compostos Radiofarmacêuticos , Animais , Humanos , Partículas alfa/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Compostos Radiofarmacêuticos/uso terapêutico , Modelos Animais de Doenças
4.
Artigo em Inglês | MEDLINE | ID: mdl-38940841

RESUMO

PURPOSE: The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS: The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS: In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION: When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.

5.
BMC Cancer ; 24(1): 146, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287346

RESUMO

BACKGROUND: Life expectancy of patients with metastatic castration-resistant prostate cancer (mCRPC) is still limited despite several systemic treatments. Within five years after diagnosis of primary prostate cancer, 10-20% of the patients have mCRPC and curation is not an option. Radionuclide therapy (RNT) targeted against prostate-specific membrane antigen (PSMA) emerged as a new treatment option and showed effective results in patients with mCRPC. Survival benefit after [177Lu]Lu-PSMA RNT has already been demonstrated in several clinical trials. However, [225Ac]Ac-PSMA (225Ac-PSMA) appears to be an even more promising radiopharmaceutical for the treatment of mCRPC. The use of alpha emitting radionuclides offers advantages over beta emitting radionuclides due to the high linear energy transfer effective for killing tumor cells and the limited range to reduce the radiation effects on the healthy tissue. However, these results are based on retrospective data and safety data of 225Ac-PSMA are still limited. Therefore, a prospective trial is needed to determine the optimal amount of activity that can be administered. METHODS: The 225Ac-PSMA-Imaging & Therapy (I&T) trial is an investigator-initiated phase I, single-center, open label, repeated dose-escalation and expansion trial. Patient with PSMA-positive mCRPC after at least one line of chemotherapy and/or one line of nonsteroidal antiandrogen will be treated with 225Ac-PSMA-I&T in increasing amount of activity per cycle. Dose-escalation following an accelerated 3 + 3 design which allows to open the next dose-level cohort in the absence of dose limiting toxicity while the previous one is still ongoing. Up to 4 treatment cohorts will be explored including up to 3 dose-escalation cohorts and one expansion cohort where patients will be administered with the recommended dose. A total of up to 30 patients will be enrolled in this trial. All patients will be evaluated for safety. Additionally, dosimetry was performed for the patients in the dose-escalation cohorts after the first 225Ac-PSMA-I&T administration. DISCUSSION: This trial will assess the safety and tolerability of 225Ac-PSMA-I&T in patients with mCRPC to recommend the optimal dose for the phase II trial. TRIAL REGISTRATION: ClinicalTrials.gov, (NCT05902247). Retrospectively registered 13 June 2023.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antígeno Prostático Específico , Estudos Prospectivos , Estudos Retrospectivos , Dipeptídeos/efeitos adversos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Heterocíclicos com 1 Anel , Resultado do Tratamento
6.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825717

RESUMO

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Assuntos
Actínio , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Actínio/química , Humanos , Linhagem Celular Tumoral , Animais , Partículas alfa/uso terapêutico , Camundongos , Feminino , Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Radioimunoterapia/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-39031187

RESUMO

Monitoring of internal exposure to short-lived alpha-emitting radionuclides such as actinium-225 (225Ac), which are becoming increasingly important in nuclear medicine, plays an important role in the radiation protection of occupationally exposed persons. After having tested gamma spectrometry, liquid scintillation counting and alpha spectrometry for monitoring of internal exposure, the focus of the present study was on solid phase extraction of 225Ac from urine in combination with alpha spectrometry. The development of the method was based on recent findings from the literature on this topic. The method was used in a pilot phase to monitor internal exposure of four workers who were directly or indirectly involved in the manufacture and/or use of 225Ac. The monitoring protocol allowed a relatively short 24-hour urine sample analysis with excellent recovery of the internal standard, but it did not allow for a detection limit of less than 1 mBq nor a sufficient yield of 225Ac. Based on these results it is concluded that an in vitro excretion analysis alone is not appropriate for monitoring internal exposure to 225Ac. Instead, different radiation monitoring techniques have to be combined to ensure the radiation protection of employees.

8.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256007

RESUMO

Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Radioisótopos , Humanos , Masculino , Meia-Vida , Medicina Nuclear , Neoplasias da Próstata/tratamento farmacológico , Radioisótopos/uso terapêutico
9.
Prostate ; 83(10): 901-911, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960580

RESUMO

BACKGROUND: Targeted radionuclide therapy with Actinium-225-labeled prostate-specific membrane antigen agents (225Ac-PSMA) is currently being studied in clinical trials for patients with metastatic castration-resistant prostate cancer (mCRPC). Compared to ß-emitting therapeutic radionuclides, alpha-emitters (e.g., 225Ac) have a significantly higher linear energy transfer and significantly shorter range. As a result, alpha emitters could be expected to improve efficacy and reduce bystander toxicity. This systematic literature review was conducted to evaluate the impact of sequencing of 177Lu-PSMA and 225Ac-PSMA targeted radionuclide therapy (TRT) in mCRPC. METHODS: The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The searches were made using relevant keywords in the PubMed, Scopus, and Web of Science databases, and articles up to August 22, 2022, were included. Publications were excluded if they were duplicate publications, wrong study or publication format, or discussing a topic out of scope. Data on efficacy, toxicity, and health-related quality of life were extracted from the individual articles. The I2 index was used to measure the extent of heterogeneity amongst studies. In the studies that reported subgroup outcomes according to the prior status on 177Lu-PSMA TRT, pooled estimates of the main outcomes were generated through descriptive analysis. Quality assessment was performed using the Newark-Ottawa-scale. RESULTS: The study included 12 articles; 1 series was performed prospectively. In total, data of 329 patients were analyzed. About 40.1% (n = 132) of the included men were pretreated with 177Lu-PSMA TRT. Seven studies, including data of 212 individuals, were eligible for quantitative analysis based on reporting outcomes of the subgroups according to their prior status on 177Lu-PSMA TRT. >25% PSA decline after 225Ac-PSMA TRT was lower in individuals who received prior 177Lu-PSMA TRT (pooled median 42.7%) compared to those who did not (pooled median 15.4%). The pooled medians of the reported median progression-free survival and overall survival for pretreated versus not pretreated individuals was 4.3 versus 14.3 months and 11.1 versus 9.2 months, respectively. However, the outcomes for each individual study were reported inconsistently (I2 = 99.9%). None of the included studies stratified the report of adverse events or changes in health-related quality of life for the subgroups. CONCLUSIONS: 225Ac-PSMA TRT is an experimental treatment for men with mCRPC. There is limited data available from high-quality trials but so far PSMA-targeted TRT has demonstrated a low morbidity profile. Our review revealed that there is a possible decrease in efficacy of targeted alpha-particle therapy if individuals previously were exposed to 177Lu-PSMA TRT. However, the level of evidence is low. The underlying mechanism by which 177Lu-PSMA TRT might trigger possible radioresistance as well as randomized controlled trials are required to establish the therapeutic efficacy and safety of 225-Ac-PSMA TRT in men refractory to 177Lu-PSMA TRT.


Assuntos
Actínio , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Qualidade de Vida , Antígeno Prostático Específico , Resultado do Tratamento , Radioisótopos/uso terapêutico
10.
Bioorg Med Chem ; 96: 117517, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939492

RESUMO

Recently, endoradiotherapy based on actinium-225 (225Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, 111In/225Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using 111In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis. Significant inhibition of tumor growth has been observed in murine 4T1 models treated with 225Ac-DOTA-PEG-CPNs when compared to mice treated with PBS or DOTA-PEG-CPNs. The 225Ac-DOTA-PEG-CPNs group experienced no single death within 24 days with the median survival considerably extended to 35 days, while all the mice treated with PBS or DOTA-PEG-CPNs died at 20 days post injection. Additionally, the histopathology studies demonstrated no obvious side effects on healthy tissues after treatment with 225Ac-DOTA-PEG-CPNs. All these results reveal that the new 225Ac-labeled DOTA-PEG-CPNs is promising as paradigm for endoradiotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Linhagem Celular Tumoral
11.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569758

RESUMO

Current cancer therapies focus on reducing immunosuppression and remodeling the tumor microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides (PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i) and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I, which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed. 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3% and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined with immunotherapy to enhance the therapeutic effect in various types of cancer.


Assuntos
Antígeno B7-H1 , Compostos Radiofarmacêuticos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Benzeno , Micrometástase de Neoplasia , Espectroscopia de Infravermelho com Transformada de Fourier , Microambiente Tumoral , Lutécio/uso terapêutico , Linhagem Celular Tumoral
12.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068876

RESUMO

Prostate-specific membrane antigens (PSMAs) are frequently overexpressed in both tumor stromal endothelial cells and malignant cells (stromal/tumor cells) of various cancers. The RGD (Arg-Gly-Asp) peptide sequence can specifically detect integrins involved in tumor angiogenesis. This study aimed to preclinically evaluate the cytotoxicity, biokinetics, dosimetry, and therapeutic efficacy of 225Ac-iPSMA-RGD to determine its potential as an improved radiopharmaceutical for alpha therapy compared with the 225Ac-iPSMA and 225Ac-RGD monomers. HEHA-HYNIC-iPSMA-RGD (iPSMA-RGD) was synthesized and characterized by FT-IR, UV-vis, and UPLC mass spectroscopy. The cytotoxicity of 225Ac-iPSMA-RGD was assessed in HCT116 colorectal cancer cells. Biodistribution, biokinetics, and therapeutic efficacy were evaluated in nude mice with induced HCT116 tumors. In vitro results showed increased DNA double-strand breaks through ROS generation, cell apoptosis, and death in HCT116 cells treated with 225Ac-iPSMA-RGD. The results also demonstrated in vivo cytotoxicity in cancer cells after treatment with 225Ac-iPSMA-RGD and biokinetic and dosimetric properties suitable for alpha therapy, delivering ablative radiation doses up to 237 Gy/3.7 kBq to HCT116 tumors in mice. Given the phenotype of HCT116 cancer cells, the results of this study warrant further dosimetric and clinical studies to determine the potential of 225Ac-iPSMA-RGD in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias da Próstata , Neoplasias de Tecidos Moles , Humanos , Masculino , Animais , Camundongos , Integrinas/metabolismo , Distribuição Tecidual , Camundongos Nus , Espectroscopia de Infravermelho com Transformada de Fourier , Células Endoteliais/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral
13.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511386

RESUMO

Radiopharmaceuticals are rapidly developing as a field, with the successful use of targeted beta emitters in neuroendocrine tumors and prostate cancer serving as catalysts. Targeted alpha emitters are in current development for several potential oncologic indications. Herein, we review the three most prevalently studied conjugated/chelated alpha emitters (225actinium, 212lead, and 211astatine) and focus on contemporary clinical trials in an effort to more fully appreciate the breadth of the current evaluation. Phase I trials targeting multiple diseases are now underway, and at least one phase III trial (in selected neuroendocrine cancers) is currently in the initial stages of recruitment. Combination trials are now also emerging as alpha emitters are integrated with other therapies in an effort to create solutions for those with advanced cancers. Despite the promise of targeted alpha therapies, many challenges remain. These challenges include the development of reliable supply chains, the need for a better understanding of the relationships between administered dose and absorbed dose in both tissue and tumor and how that predicts outcomes, and the incomplete understanding of potential long-term deleterious effects of the alpha emitters. Progress on multiple fronts is necessary to bring the potential of targeted alpha therapies into the clinic.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Humanos , Masculino , Partículas alfa/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacologia , Ensaios Clínicos como Assunto
14.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069166

RESUMO

Most Prostate Specific Membrane Antigens (PSMAs) targeting small molecules accumulate in the salivary glands (SGs), raising concerns about SG toxicity, especially after repeated therapies or therapy with 225Ac-labeled ligands. SG toxicity is assessed clinically by the severity of patient-reported xerostomia, but this parameter can be challenging to objectively quantify. Therefore, we explored the feasibility of using SG volume as a biomarker for toxicity. In 21 patients with late-stage metastatic resistant prostate cancer (mCRPC), the PSMA volume and ligand uptake of SG were analyzed retrospectively before and after two cycles of 177Lu-PSMA (LuPSMA; cohort A) and before and after one cycle of 225Ac-PSMA-617 (AcPSMA, cohort B). Mean Volume-SG in cohort A was 59 ± 13 vs. 54 ± 16 mL (-10%, p = 0.4), and in cohort B, it was 50 ± 13 vs. 40 ± 11 mL (-20%, p = 0.007), respectively. A statistically significant decrease in the activity concentration in the SG was only observed in group B (SUVmean: 9.2 ± 2.8 vs. 5.3 ± 1.8, p < 0.0001; vs. A: SUVmean: 11.2 ± 3.3 vs. 11.1 ± 3.5, p = 0.8). SG volume and PSMA-ligand uptake are promising markers to monitor the SG toxicity after a PSMA RLT.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Xerostomia , Humanos , Masculino , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Ligantes , Lutécio/uso terapêutico , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos , Glândulas Salivares/patologia , Resultado do Tratamento
15.
Med Princ Pract ; 32(3): 178-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247612

RESUMO

BACKGROUND: Actinium-225 (Ac-225) labelled PSMA RLT has been tested recently in metastatic castration-resistant prostate cancer (mCRPC), with encouraging results. Ac-225, being an alpha emitter, is expected to have higher efficacy and fewer side effects compared to the beta-emitters such as Lutetium-177. We have performed a meta-analysis to assess the therapeutic responses, survival effects, and significant side effects of Ac-225 PSMA RLT in patients with mCRPC. METHODOLOGY: Systematic literature search was carried out from five electronic databases PubMed/MEDLINE, SCOPUS, EMBASE, Web of Science, and Cochrane Library until March 2021. Eight studies were found to be eligible for this metanalysis. RESULTS: Eight studies with 226 patients were analyzed in this metanalysis. 81% (95% CI 73-89) patients had a decline in PSA levels. 60% of the patients showed more than 50% PSA decline. Two studies assessed survival effects of radioligand naïve patients compared to patients who had received Lu-PSMA therapy previously and the pooled HR for radioligand naïve patients is 0.22. The most common toxicity reported was xerostomia in 167 patients out of 226 patients (73.9%, 95% CI 67.6-79.5%); however, most of them were confined to grade I and II levels. Other reported side effects include hematologic toxicity and nephrotoxicity. CONCLUSION: Ac-PSMA RLT is a safe and potentially effective treatment option for patients with mCRPC.


Assuntos
Actínio , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Actínio/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antígeno Prostático Específico , Próstata , Dipeptídeos/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos
16.
Eur J Nucl Med Mol Imaging ; 49(12): 3989-3999, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802160

RESUMO

PURPOSE: The spatial distribution of radiopharmaceuticals within multicellular clusters is known to have a significant effect on their biological response. Most therapeutic radiopharmaceuticals distribute nonuniformly in tissues which makes predicting responses of micrometastases challenging. The work presented here analyzes published temporally dependent nonuniform activity distributions within tumor spheroids treated with actinium-225-DOTA encapsulating liposomes (225Ac-liposomes) and uses these data in MIRDcell V3.11 to calculate absorbed dose distributions and predict biological response. The predicted responses are compared with experimental responses. METHODS: Four types of liposomes were prepared having membranes with different combinations of release (R) and adhesion (A) properties. The combinations were R-A-, R-A+, R+A-, and R+A+. These afford different penetrating properties into tissue. The liposomes were loaded with either carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) or 225Ac. MDA-MB-231 spheroids were treated with the CFDA-SE-liposomes, harvested at different times, and the time-integrated CFDA-SE concentration at each radial position within the spheroid was determined. This was translated into mean 225Ac decays/cell versus radial position, uploaded to MIRDcell, and the surviving fraction of cells in spherical multicellular clusters was simulated. The MIRDcell-predicted surviving fractions were compared with experimental fractional-outgrowths of the spheroids following treatment with 225Ac-liposomes. RESULTS: The biological responses of the multicellular clusters treated with 225Ac-liposomes with physicochemical properties R+A+, R-A+, and R-A- were predicted by MIRDcell with statistically significant accuracy. The prediction for R+A- was not predicted accurately. CONCLUSION: In most instances, MIRDcell predicts responses of spheroids treated with 225Ac-liposomes that result in different tissue-penetrating profiles of the delivered radionuclides.


Assuntos
Lipossomos , Neoplasias , Fluoresceínas , Compostos Heterocíclicos com 1 Anel , Humanos , Lipossomos/química , Micrometástase de Neoplasia , Radioisótopos , Compostos Radiofarmacêuticos , Succinimidas
17.
Eur J Nucl Med Mol Imaging ; 49(11): 3627-3638, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35556158

RESUMO

PURPOSE: Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the ß-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS: The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION: We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Actínio , Linhagem Celular Tumoral , DNA , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Lutécio/uso terapêutico , Masculino , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Radioisótopos
18.
Molecules ; 27(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408554

RESUMO

Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.


Assuntos
Nanopartículas , Neoplasias , Partículas alfa/uso terapêutico , Animais , Lipoproteínas HDL/química , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Receptores Depuradores
19.
Eur J Nucl Med Mol Imaging ; 49(1): 30-46, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34173838

RESUMO

PURPOSE: This review discusses the current state of prostate-specific membrane antigen (PSMA)-based alpha therapy of metastatic castration-resistant prostate cancer (mCRPC). With this in-depth discussion on the growing field of PSMA-based alpha therapy (PAT), we aimed to increase the interactions between basic scientists and physician-scientists in order to advance the field. METHODS: To achieve this, we discuss the potential, current status, and opportunities for alpha therapy and strategies, attempted to date, and important questions that need to be addressed. The paper reviews important concepts, including whom to treat, how to treat, what to expect regarding treatment outcome, and toxicity, and areas requiring further investigations. RESULTS: There is much excitement about the potential of this field. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other conventional therapies. CONCLUSION: A better understanding of the strengths and limitations of PAT may help in creating an effective therapy for mCRPC and design a rational combinatorial approach to treatment by targeting different tumor pathways.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Neoplasias de Próstata Resistentes à Castração/radioterapia , Humanos , Masculino , Resultado do Tratamento
20.
Eur J Nucl Med Mol Imaging ; 49(1): 279-289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196752

RESUMO

PURPOSE: We demonstrate cyclotron production of high-quality 225Ac using an electroplated 226Ra target. METHODS: 226Ra was extracted from legacy Ra sources using a chelating resin. Subsequent ion-exchange purification gave pure 226Ra with a certain amount of carrier Ba. The radium target was prepared by electroplating. We successfully deposited about 37 MBq of 226Ra on a target box. Maximum activation was achieved using 15.6 MeV protons on the target at 20 µA for 5 h. Two functional resins with various concentrations of nitric acid purified 225Ac and recovered 226Ra. Cooling the intermediate 225Ac for 2-3 weeks decayed the major byproduct of 226Ac and increased the radionuclidic purity of 225Ac. Repeating the same separation protocol provided high-quality 225Ac. RESULTS: We obtained 225Ac at a yield of about 2.4 MBq at the end of bombardment (EOB), and the subsequent initial purification gave 1.7 MBq of 225Ac with 226Ac/225Ac ratio of < 3% at 4 days from EOB. Additional cooling time coupled with the separation procedure (secondary purification) effectively increased the 225Ac (4n + 1 series) radionuclidic purity up to 99 + %. The recovered 225Ac had a similar identification to commercially available 225Ac originating from a 229Th/225Ac generator. CONCLUSION: This procedure, which involves the 226Ra(p,2n)225Ac reaction and the appropriate purification, has the potential to be a major alternative pathway for 225Ac production because it can be performed in any facility with a compact cyclotron to address the increasing demand for 225Ac.


Assuntos
Ciclotrons , Rádio (Elemento) , Humanos , Prótons , Radioisótopos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa