Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 63(1): 100156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843683

RESUMO

N-acyl-phosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase enzyme that converts NAPEs to bioactive N-acyl-ethanolamides. Altered NAPE-PLD activity may contribute to pathogenesis of obesity, diabetes, atherosclerosis, and neurological diseases. Selective measurement of NAPE-PLD activity is challenging, however, because of alternative phospholipase pathways for NAPE hydrolysis. Previous methods to measure NAPE-PLD activity involved addition of exogenous NAPE followed by TLC or LC/MS/MS, which are time and resource intensive. Recently, NAPE-PLD activity in cells has been assayed using the fluorogenic NAPE analogs PED-A1 and PED6, but these substrates also detect the activity of serine hydrolase-type lipases PLA1 and PLA2. To create a fluorescence assay that selectively measured cellular NAPE-PLD activity, we synthesized an analog of PED-A1 (flame-NAPE) where the sn-1 ester bond was replaced with an N-methyl amide to create resistance to PLA1 hydrolysis. Recombinant NAPE-PLD produced fluorescence when incubated with either PED-A1 or flame-NAPE, whereas PLA1 only produced fluorescence when incubated with PED-A1. Furthermore, fluorescence in HepG2 cells using PED-A1 could be partially blocked by either biothionol (a selective NAPE-PLD inhibitor) or tetrahydrolipstatin (an inhibitor of a broad spectrum of serine hydrolase-type lipases). In contrast, fluorescence assayed in HepG2 cells using flame-NAPE could only be blocked by biothionol. In multiple cell types, the phospholipase activity detected using flame-NAPE was significantly more sensitive to biothionol inhibition than that detected using PED-A1. Thus, using flame-NAPE to measure phospholipase activity provides a rapid and selective method to measure NAPE-PLD activity in cells and tissues.


Assuntos
Fosfatidiletanolaminas
2.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494185

RESUMO

Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.


Assuntos
Amidas/metabolismo , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Palmíticos/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Analgesia , Animais , Anti-Inflamatórios/farmacologia , Desenvolvimento de Medicamentos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Mobilização Lipídica , Receptores Acoplados a Proteínas G/antagonistas & inibidores
3.
Can J Physiol Pharmacol ; 97(11): 1035-1041, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31283890

RESUMO

The cannabinoid system has been suspected to play a role in the mechanisms of action of dipyrone and paracetamol. Our purpose was to measure the local endocannabinoid and N-acylethanolamide levels in the brain and spinal cord of rats following dipyrone and paracetamol administration. Nociception was assessed 1, 5, and 12 h following drug injections in Wistar rats, using tail-flick and hot-plate tests. The antinociceptive effects of dipyrone (150, 300, and 600 mg/kg, i.p.) and paracetamol (30, 100, and 300 mg/kg, i.p.) were observed. After administration of the highest doses of dipyrone and paracetamol, endocannabinoid (N-arachidonoylethanolamide (AEA), 2-arachidonoylglycerol (2-AG)) and N-acylethanolamide (palmitoylethanolamide (PEA), oleoylethanolamide (OEA)) levels were measured in the periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and spinal cords of rats using tandem mass spectrometry with liquid chromatography. Increased 2-AG levels were observed in the PAG and the RVM 12 h after paracetamol injection; dipyrone exerted no action on 2-AG levels. Analgesic administrations led to a reduction in AEA levels in the RVM and spinal cord; similar decreases in PEA and OEA levels were observed in the RVM and the spinal cord. Dipyrone and paracetamol administrations appear to exert complicated effects on endocannabinoid and N-acylethanolamide levels in rats.


Assuntos
Acetaminofen/farmacologia , Analgésicos/farmacologia , Encéfalo/efeitos dos fármacos , Dipirona/farmacologia , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Palmíticos/metabolismo , Medula Espinal/efeitos dos fármacos , Acetaminofen/administração & dosagem , Amidas , Analgésicos/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Dipirona/administração & dosagem , Masculino , Nociceptividade/efeitos dos fármacos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/fisiologia
4.
Pharmacol Res ; 86: 32-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844438

RESUMO

The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Etanolaminas/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/farmacologia , Amidas , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Etanolaminas/imunologia , Etanolaminas/metabolismo , Etanolaminas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/imunologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , PPAR alfa/imunologia , PPAR alfa/metabolismo , Dor/tratamento farmacológico , Dor/imunologia , Dor/metabolismo , Ácidos Palmíticos/imunologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/uso terapêutico
5.
Front Cell Neurosci ; 16: 902278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003139

RESUMO

N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa