Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
Cell ; 185(9): 1588-1601.e14, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35413241

RESUMO

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , Humanos , Imunidade Humoral , Glicoproteína da Espícula de Coronavírus , Linfócitos T
2.
Cell ; 184(1): 169-183.e17, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33296701

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.


Assuntos
COVID-19/imunologia , COVID-19/fisiopatologia , Memória Imunológica , SARS-CoV-2/fisiologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , COVID-19/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/química , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia
3.
Immunity ; 52(1): 17-35, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940268

RESUMO

Cancer immunotherapy is a validated and critically important approach for treating patients with cancer. Given the vast research and clinical investigation efforts dedicated to advancing both endogenous and synthetic immunotherapy approaches, there is a need to focus on crucial questions and define roadblocks to the basic understanding and clinical progress. Here, we define ten key challenges facing cancer immunotherapy, which range from lack of confidence in translating pre-clinical findings to identifying optimal combinations of immune-based therapies for any given patient. Addressing these challenges will require the combined efforts of basic researchers and clinicians, and the focusing of resources to accelerate understanding of the complex interactions between cancer and the immune system and the development of improved treatment options for patients with cancer.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/imunologia
4.
Proc Natl Acad Sci U S A ; 121(35): e2401058121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163333

RESUMO

B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.


Assuntos
COVID-19 , Receptores de Antígenos de Linfócitos B , SARS-CoV-2 , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , SARS-CoV-2/imunologia , Vacinas contra Influenza/imunologia , Imunização/métodos , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Linfócitos B/imunologia , Vacinação , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala
5.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39226888

RESUMO

Liquid biopsies based on peripheral blood offer a minimally invasive alternative to solid tissue biopsies for the detection of diseases, primarily cancers. However, such tests currently consider only the serum component of blood, overlooking a potentially rich source of biomarkers: adaptive immune receptors (AIRs) expressed on circulating B and T cells. Machine learning-based classifiers trained on AIRs have been reported to accurately identify not only cancers but also autoimmune and infectious diseases as well. However, when using the conventional "clonotype cluster" representation of AIRs, individuals within a disease or healthy cohort exhibit vastly different features, limiting the generalizability of these classifiers. This study aimed to address the challenge of classifying specific diseases from circulating B or T cells by developing a novel representation of AIRs based on similarity networks constructed from their antigen-binding regions (paratopes). Features based on this novel representation, paratope cluster occupancies (PCOs), significantly improved disease classification performance for infectious disease, autoimmune disease, and cancer. Under identical methodological conditions, classifiers trained on PCOs achieved a mean AUC of 0.893 when applied to new individuals, outperforming clonotype cluster-based classifiers (AUC 0.714) and the best-performing published classifier (AUC 0.777). Surprisingly, for cancer patients, we observed that "healthy-biased" AIRs were predicted to target known cancer-associated antigens at dramatically higher rates than healthy AIRs as a whole (Z scores >75), suggesting an overlooked reservoir of cancer-targeting immune cells that could be identified by PCOs.


Assuntos
Doenças Transmissíveis , Neoplasias , Humanos , Neoplasias/imunologia , Doenças Transmissíveis/imunologia , Receptores Imunológicos/metabolismo , Aprendizado de Máquina , Doenças Autoimunes/imunologia , Doenças Autoimunes/diagnóstico , Autoimunidade
6.
Immunity ; 46(1): 120-132, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28087238

RESUMO

Lymphocytes circulate through lymph nodes (LN) in search for antigen in what is believed to be a continuous process. Here, we show that lymphocyte migration through lymph nodes and lymph occurred in a non-continuous, circadian manner. Lymphocyte homing to lymph nodes peaked at night onset, with cells leaving the tissue during the day. This resulted in strong oscillations in lymphocyte cellularity in lymph nodes and efferent lymphatic fluid. Using lineage-specific genetic ablation of circadian clock function, we demonstrated this to be dependent on rhythmic expression of promigratory factors on lymphocytes. Dendritic cell numbers peaked in phase with lymphocytes, with diurnal oscillations being present in disease severity after immunization to induce experimental autoimmune encephalomyelitis (EAE). These rhythms were abolished by genetic disruption of T cell clocks, demonstrating a circadian regulation of lymphocyte migration through lymph nodes with time-of-day of immunization being critical for adaptive immune responses weeks later.


Assuntos
Imunidade Adaptativa/imunologia , Quimiotaxia de Leucócito/imunologia , Relógios Circadianos/imunologia , Vigilância Imunológica/imunologia , Linfócitos/imunologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Imunofluorescência , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
7.
Int Immunol ; 36(9): 465-470, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666722

RESUMO

The long-term value of efficient antigen discovery includes gaining insights into the variety of potential cancer neoantigens, effective vaccines lacking adverse effects, and adaptive immune receptor (IR) targets for blocking adaptive IR-antigen interactions in autoimmunity. While the preceding goals have been partially addressed via big data approaches to HLA (human leukocyte antigen)-epitope binding, there has been little such progress in the big data setting for adaptive IR-epitope binding. This delay in progress for the latter is likely due to, among other things, the much more complicated adaptive IR repertoire in an individual compared to individual HLA alleles. Thus, results described here represent the application of an algorithm for efficient assessment of immunoglobulin heavy chain complementarity determining region-3 (IGH CDR3)-gliadin epitope interactions, with a focus on epitopes known to be associated with an immune response in celiac disease. The hydrophobic, chemical complementarity between celiac case IGH CDR3s and known celiac epitopes was found to be greater in comparison to the hydrophobic, chemical complementarity between the same celiac case IGH CDR3s and a series of control epitopes. Thus, the approaches indicated here likely offer guidance for the development of conveniently applied algorithms for antigen verification and discovery.


Assuntos
Doença Celíaca , Regiões Determinantes de Complementaridade , Gliadina , Cadeias Pesadas de Imunoglobulinas , Humanos , Doença Celíaca/imunologia , Doença Celíaca/genética , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Gliadina/imunologia , Gliadina/química , Epitopos/imunologia , Algoritmos
8.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214784

RESUMO

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Vírus da Influenza A , Influenza Humana , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas , Hiperglicemia/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Drug Resist Updat ; 73: 101037, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171078

RESUMO

Chaperone-mediated autophagy (CMA), a proteolytic system contributing to the degradation of intracellular proteins in lysosomes, is upregulated in tumors for pro-tumorigenic and pro-survival purposes. In this study, bioinformatics analysis revealed the co-occurrence of upregulated CMA and PD-L1 accumulation in metastatic melanoma with adaptive immune resistance (AIR) to anti-PD1 treatment, suggesting the potential therapeutic effects of rewiring CMA for PD-L1 degradation. Furthermore, this co-occurrence is attributed to IFN-γ-mediated compensatory up-regulation of PD-L1 and CMA, accompanied by enhanced macropinocytosis. Drawing inspiration from the cellular uptake of prions via macropinocytosis, a prion-like chemical inducer of proximity called SAP was engineered using self-assembly of the designed chiral peptide PHA. By exploiting sensitized macropinocytosis, SAP clandestinely infiltrates tumor cells and subsequently disintegrates into PHA, which reprograms CMA by inducing PD-L1 close to HSPA8. SAP degrades PD-L1 in a CMA-dependent manner and effectively restores the anti-tumor immune response in both allografting and Hu-PDX melanoma mouse models with AIR while upholding a high safety profile. Collectively, the reported SAP not only presents an immune reactivation strategy with clinical translational potential for overcoming AIR in cutaneous melanomas but serves as a reproducible example of precision-medicine-guided drug development that fully leverages specific cellular indications in pathological states.


Assuntos
Autofagia Mediada por Chaperonas , Melanoma , Príons , Camundongos , Animais , Antígeno B7-H1/metabolismo , Melanoma/metabolismo , Príons/metabolismo , Lisossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943978

RESUMO

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Assuntos
Imunidade Adaptativa , COVID-19 , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Imunidade Adaptativa/genética , Idoso , Linfócitos B/imunologia , COVID-19/genética , COVID-19/imunologia , Loci Gênicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , SARS-CoV-2/imunologia , Soroconversão , Linfócitos T/imunologia
11.
J Biol Chem ; 299(2): 102843, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581209

RESUMO

Transforming growth factor-ß1 (TGF-ß1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-ß1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-ß1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-ß1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-ß1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-ß1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-ß1 initiates the TGF-ßR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-ß1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-ß1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-ß1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.


Assuntos
Ciclídeos , Fatores de Transcrição Forkhead , Proteína Smad3 , Linfócitos T , Fator de Crescimento Transformador beta1 , Animais , Ciclídeos/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
12.
Infect Immun ; 92(4): e0001824, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38514468

RESUMO

Borrelia burgdorferi, the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi. Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi-infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Glicoproteína da Espícula de Coronavírus , Camundongos , Humanos , Animais , Imunidade Humoral , Imunoglobulina M , Antibacterianos , Anticorpos Antibacterianos
13.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059517

RESUMO

Cartilaginous fish (sharks, rays, and chimeras) comprise the oldest living jawed vertebrates with a mammalian-like adaptive immune system based on immunoglobulins (Ig), T-cell receptors (TCRs), and the major histocompatibility complex (MHC). Here, we show that the cartilaginous fish "adaptive MHC" is highly regimented and compact, containing (i) a classical MHC class Ia (MHC-Ia) region containing antigen processing (antigen peptide transporters and immunoproteasome) and presenting (MHC-Ia) genes, (ii) an MHC class II (MHC-II) region (with alpha and beta genes) with linkage to beta-2-microglobulin (ß2m) and bromodomain-containing 2, (iii) nonclassical MHC class Ib (MHC-Ib) regions with 450 million-year-old lineages, and (iv) a complement C4 associated with the MHC-Ia region. No MHC-Ib genes were found outside of the elasmobranch MHC. Our data suggest that both MHC-I and MHC-II genes arose after the second round of whole-genome duplication (2R) on a human chromosome (huchr) 6 precursor. Further analysis of MHC paralogous regions across early branching taxa from all jawed vertebrate lineages revealed that Ig/TCR genes likely arose on a precursor of the huchr9/12/14 MHC paralog. The ß2m gene is linked to the Ig/TCR genes in some vertebrates suggesting that it was present at 1R, perhaps as the donor of C1 domain to the primordial MHC gene. In sum, extant cartilaginous fish exhibit a conserved and prototypical MHC genomic organization with features found in various vertebrates, reflecting the ancestral arrangement for the jawed vertebrates.


Assuntos
Complexo Principal de Histocompatibilidade , Vertebrados , Animais , Humanos , Complexo Principal de Histocompatibilidade/genética , Vertebrados/genética , Peixes/genética , Proteínas/genética , Apresentação de Antígeno , Mamíferos/genética , Evolução Molecular , Filogenia
14.
Clin Immunol ; 261: 109939, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382658

RESUMO

Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.


Assuntos
Lúpus Eritematoso Sistêmico , Animais , Camundongos , Sistema Imunitário
15.
Eur J Immunol ; 53(12): e2350503, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735713

RESUMO

The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αß T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or ß chain, leading to a complete loss of either γδ or αß T cells. Our results show that a deletion of αß T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αß T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αß T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.


Assuntos
Galinhas , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Fenótipo , Linfócitos B , Mamíferos
16.
Eur J Immunol ; 53(6): e2250246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015057

RESUMO

The proprotein convertase subtilisin/kexins (PCSKs) regulate biological actions by cleaving immature substrate proteins. The archetype PCSK, FURIN, promotes the pathogenicity of viruses by proteolytically processing viral proteins. FURIN has also important regulatory functions in both innate and adaptive immune responses but its role in the CD8+ CTLs remains enigmatic. We used a T-cell-specific FURIN deletion in vivo to demonstrate that FURIN promotes host response against the CTL-dependent lymphocytic choriomeningitis virus by virtue of restricting viral burden and augmenting interferon gamma (IFNG) production. We also characterized Furin KO CD8+ T cells ex vivo, including after their activation with FURIN regulating cytokines IL12 or TGFB1. Furin KO CD8+ T cells show an inherently activated phenotype characterized by the upregulation of effector genes and increased frequencies of CD44+ , TNF+ , and IFNG+ cells. In the activated CTLs, FURIN regulates the productions of IL2, TNF, and GZMB and the genes associated with the TGFBR-signaling pathway. FURIN also controls the expression of Eomes, Foxo1, and Bcl6 and the levels of ITGAE and CD62L, which implies a role in the development of CTL memory. Collectively, our data suggest that the T-cell expressed FURIN is important for host responses in viral infections, CTL homeostasis/activation, and memory development.


Assuntos
Coriomeningite Linfocítica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T CD8-Positivos , Furina/genética , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica , Memória Imunológica
17.
J Neuroinflammation ; 21(1): 165, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937750

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos B , Lesões Encefálicas Traumáticas , Antígenos de Histocompatibilidade Classe II , Camundongos Transgênicos , Animais , Camundongos , Masculino , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos B/efeitos dos fármacos , Meninges/patologia , Meninges/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Presenilina-1/genética , Camundongos Endogâmicos C57BL
18.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062022

RESUMO

T-cell receptor (TCR) sequencing has enabled the development of innovative diagnostic tests for cancers, autoimmune diseases and other applications. However, the rarity of many T-cell clonotypes presents a detection challenge, which may lead to misdiagnosis if diagnostically relevant TCRs remain undetected. To address this issue, we developed TCRpower, a novel computational pipeline for quantifying the statistical detection power of TCR sequencing methods. TCRpower calculates the probability of detecting a TCR sequence as a function of several key parameters: in-vivo TCR frequency, T-cell sample count, read sequencing depth and read cutoff. To calibrate TCRpower, we selected unique TCRs of 45 T-cell clones (TCCs) as spike-in TCRs. We sequenced the spike-in TCRs from TCCs, together with TCRs from peripheral blood, using a 5' RACE protocol. The 45 spike-in TCRs covered a wide range of sample frequencies, ranging from 5 per 100 to 1 per 1 million. The resulting spike-in TCR read counts and ground truth frequencies allowed us to calibrate TCRpower. In our TCR sequencing data, we observed a consistent linear relationship between sample and sequencing read frequencies. We were also able to reliably detect spike-in TCRs with frequencies as low as one per million. By implementing an optimized read cutoff, we eliminated most of the falsely detected sequences in our data (TCR α-chain 99.0% and TCR ß-chain 92.4%), thereby improving diagnostic specificity. TCRpower is publicly available and can be used to optimize future TCR sequencing experiments, and thereby enable reliable detection of disease-relevant TCRs for diagnostic applications.


Assuntos
Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T
19.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38116887

RESUMO

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Assuntos
Antígenos CD40 , Ligante de CD40 , Doenças Desmielinizantes , Vírus da Hepatite Murina , Doenças Neuroinflamatórias , Animais , Ligante de CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Humanos , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/imunologia , Vírus da Hepatite Murina/patogenicidade , Vírus da Hepatite Murina/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Esclerose Múltipla/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
20.
Mov Disord ; 39(7): 1179-1189, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529776

RESUMO

BACKGROUND: Adaptive immune dysfunction may play a crucial role in Parkinson's disease (PD) development. Isolated rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of synucleinopathies, including PD. Elucidating the peripheral adaptive immune system is crucial in iRBD, but current knowledge remains limited. OBJECTIVE: This study aimed to characterize peripheral lymphocyte profiles in iRBD patients compared with healthy control subjects (HCs). METHODS: This cross-sectional study recruited polysomnography-confirmed iRBD patients and age- and sex-matched HCs. Venous blood was collected from each participant. Flow cytometry was used to evaluate surface markers and intracellular cytokine production in peripheral blood mononuclear cells. RESULTS: Forty-four iRBD patients and 36 HCs were included. Compared with HCs, patients with iRBD exhibited significant decreases in absolute counts of total lymphocytes and CD3+ T cells. In terms of T cell subsets, iRBD patients showed higher frequencies and counts of proinflammatory T helper 1 cells and INF-γ+ CD8+ T cells, along with lower frequencies and counts of anti-inflammatory T helper 2 cells. A significant increase in the frequency of central memory T cells in CD8+ T cells was also observed in iRBD. Regarding B cells, iRBD patients demonstrated reduced frequencies and counts of double-negative memory B cells compared with control subjects. CONCLUSIONS: This study demonstrated alterations in the peripheral adaptive immune system in iRBD, specifically in CD4+ and INF-γ+ CD8+ T cell subsets. An overall shift toward a proinflammatory state of adaptive immunity was already evident in iRBD. These observations might provide insights into the optimal timing for initiating immune interventions in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Subpopulações de Linfócitos , Transtorno do Comportamento do Sono REM , Humanos , Masculino , Transtorno do Comportamento do Sono REM/imunologia , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Subpopulações de Linfócitos/imunologia , Doença de Parkinson/imunologia , Polissonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa