Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2303043120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844221

RESUMO

Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.


Assuntos
Crotalus , Variação Genética , Humanos , Animais , Crotalus/genética , Genoma/genética , Genômica/métodos , Endogamia , Espécies em Perigo de Extinção
2.
Mol Ecol ; 32(11): 2818-2834, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811385

RESUMO

The distribution of ecotypic variation in natural populations is influenced by neutral and adaptive evolutionary forces that are challenging to disentangle. This study provides a high-resolution portrait of genomic variation in Chinook salmon (Oncorhynchus tshawytscha) with emphasis on a region of major effect for ecotypic variation in migration timing. With a filtered data set of ~13 million single nucleotide polymorphisms (SNPs) from low-coverage whole genome resequencing of 53 populations (3566 barcoded individuals), we contrasted patterns of genomic structure within and among major lineages and examined the extent of a selective sweep at a major effect region underlying migration timing (GREB1L/ROCK1). Neutral variation provided support for fine-scale structure of populations, while allele frequency variation in GREB1L/ROCK1 was highly correlated with mean return timing for early and late migrating populations within each of the lineages (r2  = .58-.95; p < .001). However, the extent of selection within the genomic region controlling migration timing was much narrower in one lineage (interior stream-type) compared to the other two major lineages, which corresponded to the breadth of phenotypic variation in migration timing observed among lineages. Evidence of a duplicated block within GREB1L/ROCK1 may be responsible for reduced recombination in this portion of the genome and contributes to phenotypic variation within and across lineages. Lastly, SNP positions across GREB1L/ROCK1 were assessed for their utility in discriminating migration timing among lineages, and we recommend multiple markers nearest the duplication to provide highest accuracy in conservation applications such as those that aim to protect early migrating Chinook salmon. These results highlight the need to investigate variation throughout the genome and the effects of structural variants on ecologically relevant phenotypic variation in natural species.


Assuntos
Variação Genética , Salmão , Humanos , Animais , Variação Genética/genética , Alelos , Salmão/genética , Frequência do Gene/genética , Genômica , Quinases Associadas a rho/genética
3.
Ann Bot ; 130(4): 509-523, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797146

RESUMO

BACKGROUND AND AIMS: Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS: The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS: The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS: We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.


Assuntos
Pinus , Árvores , Clima , Secas , Interação Gene-Ambiente , Fenótipo , Pinus/fisiologia
4.
Mol Ecol ; 29(14): 2612-2625, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32557885

RESUMO

An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long- and short-term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre-date the effects of recent drift, and that functional variation in these loci persists despite small short-term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of "drift debt," a nonequilibrium state where present-day levels of variation overestimate the amount of functional genetic diversity present in future populations.


Assuntos
Crotalus , Deriva Genética , Variação Genética , Genética Populacional , Animais , Crotalus/genética , Densidade Demográfica , Seleção Genética
5.
BMC Evol Biol ; 19(1): 17, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630408

RESUMO

BACKGROUND: The aim of the study was to use hybrid populations as well as island populations of the European brown hare (Lepus europaeus) to explore the effect of evolutionary events, such as the post-deglaciation translocations, spontaneous and human-mediated, local adaptation and the genetic drift in the shaping of the phylogeographic patterns of the species. For this purpose, we used molecular markers, both nuclear and mitochondrial, that are indicative for local adaptation as well as neutral markers to elucidate the patterns of population differentiation based on geographic isolation and the clade of origin. To broaden our analysis, we included data from our previous studies concerning mainland populations, to explore the genetic differentiation in the base of the geographic origin (mainland/island) of the populations. RESULTS: Our results suggest that local adaptation shapes the differentiation in both genomes, favoring specific alleles in nuclear genes (e.g. DQA) or haplotypes in mtDNA (e.g. Control Region, CR). mtDNA variation was found to be in a higher level and was able to give a phylogeographic signal for the populations. Furthermore, the degree of variation was influenced not only by the geographic origin, but also by the clade of origin, since specific island populations of Anatolian origin showed a greater degree of variation compared to specific mainland populations of the European clade. Concerning the hybrid population, we confirmed the existence of both clades in the territory and we provided a possible explanation for the lack of introgression between the clades. CONCLUSION: Our results indicate that the Quaternary's climatic oscillations played a major role in the shaping of the phylogeographic patterns of the species, by isolating populations in the distinct refugia, where they adapted and differentiate in allopatry, leading to genome incompatibilities observed nowadays.


Assuntos
Lebres/genética , Hibridização Genética , Ilhas , Filogeografia , Alelos , Animais , DNA Mitocondrial/genética , Éxons/genética , Frequência do Gene/genética , Variação Genética , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia
6.
J Evol Biol ; 31(9): 1284-1299, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873875

RESUMO

Growth rhythm that is well synchronized with seasonal changes in local climatic conditions is understood to enhance fitness; however, rapid ongoing climate change threatens to disrupt this synchrony. To evaluate phenotypic selection on growth rhythm under expected warmer and drier future climate, seedlings from 49 populations of whitebark pine (Pinus albicaulis Engelm.) were grown and measured over more than 10 years in two common garden field experiments on sites that approximate the projected future climate of the seed origins. Selection on growth rhythm was assessed by relating individual plant fitness to timing and rate of shoot elongation. Differential survival clearly evidenced selection on growth rhythm. We detected directional and stabilizing selection that varied in magnitude between experimental sites and among years. The observed phenotypic selection supports the interpretation of clinal variation among populations within tree species as reflecting adaptive variation in response to past natural selection mediated by climate. To the extent that growth rhythm is heritable, results of the present study suggest evolution of whitebark pine toward a more distinct timing of shoot elongation and generally more rapid elongation in the immediate next generation under ongoing climate change in environments similar to the study sites.


Assuntos
Pinus/crescimento & desenvolvimento , Seleção Genética , Temperatura , Mudança Climática , Noroeste dos Estados Unidos , Fenótipo , Pinus/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
7.
Conserv Biol ; 32(1): 148-158, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28631859

RESUMO

Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human-dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , California , Ecossistema , Fluxo Gênico , Variação Genética , Humanos
8.
Int J Mol Sci ; 19(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498674

RESUMO

Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of monocotyledons. This family contains a number of economically-important horticulture and flowering plants. However, the limited availability of genomic information largely hindered the study of molecular evolution and phylogeny of Orchidaceae. In this study, we determined the evolutionary characteristics of whole chloroplast (cp) genomes and the phylogenetic relationships of the family Orchidaceae. We firstly characterized the cp genomes of four orchid species: Cremastra appendiculata, Calanthe davidii, Epipactis mairei, and Platanthera japonica. The size of the chloroplast genome ranged from 153,629 bp (C. davidi) to 160,427 bp (E. mairei). The gene order, GC content, and gene compositions are similar to those of other previously-reported angiosperms. We identified that the genes of ndhC, ndhI, and ndhK were lost in C. appendiculata, in that the ndh I gene was lost in P. japonica and E. mairei. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in orchid species. E. mairei had the highest number of repeats (81), while C. davidii had the lowest number (57). The total number of Simple Sequence Repeats is at least 50 in C. davidii, and, at most, 78 in P. japonica. Interestingly, we identified 16 genes with positive selection sites (the psbH, petD, petL, rpl22, rpl32, rpoC1, rpoC2, rps12, rps15, rps16, accD, ccsA, rbcL, ycf1, ycf2, and ycf4 genes), which might play an important role in the orchid species' adaptation to diverse environments. Additionally, 11 mutational hotspot regions were determined, including five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF). The phylogenetic analysis based on whole cp genomes showed that C. appendiculata was closely related to C. striata var. vreelandii, while C. davidii and C. triplicate formed a small monophyletic evolutionary clade with a high bootstrap support. In addition, five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae, and Vanilloideae, formed a nested evolutionary relationship in the phylogenetic tree. These results provide important insights into the adaptive evolution and phylogeny of Orchidaceae.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Genômica , Orchidaceae/genética , Adaptação Biológica , Composição de Bases , Dosagem de Genes , Ordem dos Genes , Genômica/métodos , Repetições de Microssatélites , Mutação , Fases de Leitura Aberta , Orchidaceae/classificação , Filogenia , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Análise de Sequência de DNA
9.
Mol Ecol ; 26(19): 4990-5002, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28614599

RESUMO

While large-scale genomic approaches are increasingly revealing the genetic basis of polymorphic phenotypes such as colour morphs, such approaches are almost exclusively conducted in species with high-quality genomes and annotations. Here, we use Pool-Seq data for both genome assembly and SNP frequency estimation, followed by scanning for FST outliers to identify divergent genomic regions. Using paired-end, short-read sequencing data from two groups of individuals expressing divergent phenotypes, we generate a de novo rough-draft genome, identify SNPs and calculate genomewide FST differences between phenotypic groups. As genomes generated by Pool-Seq data are highly fragmented, we also present an approach for super-scaffolding contigs using existing protein-coding data sets. Using this approach, we reanalysed genomic data from two recent studies of birds and butterflies investigating colour pattern variation and replicated their core findings, demonstrating the accuracy and power of a Pool-Seq-only approach. Additionally, we discovered new regions of high divergence and new annotations that together suggest novel parallels between birds and butterflies in the origins of their colour pattern variation.


Assuntos
Genômica/métodos , Modelos Genéticos , Pigmentação/genética , Animais , Aves/genética , Borboletas/genética , Cor , Drosophila melanogaster/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Am J Bot ; 104(8): 1205-1218, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29756223

RESUMO

PREMISE OF THE STUDY: With ongoing climate change, understanding of intraspecific adaptive variation is critical for conservation and restoration of plant species. Such information is especially scarce for threatened and endangered tree species, such as Pinus albicaulis Engelm. Therefore, our principal aims were to assess adaptive variation and characterize its relationship with climate of seed origin. METHODS: We grew seedlings from 49 P. albicaulis populations representative of the interior northwestern United States in two common garden field experiments under warm-dry conditions that mimic climatic conditions predicted in the current century for areas within the species' range. Differences among populations were assessed for growth and survival. We then used regression to describe clines of apparent adaptive variation in relation to climate variation among the populations' origins. KEY RESULTS: We detected genetic divergence for growth and survival among populations of P. albicaulis. These differences corresponded to distinct climatic clines. Populations originating from locations with lower spring precipitation exhibited greater survival in response to natural drought. Populations originating from increasingly milder climates exhibited greater height growth under relatively limited stress in early years and greater fitness after 12 yr. CONCLUSIONS: The results suggest that P. albicaulis exhibits adaptive variation for drought tolerance and growth in response to selection pressures associated with variation in moisture availability and temperature, respectively. Even so, clinal variation was relatively gentle. Thus, apparent differences in local adaptation to climate among populations appears to be relatively low.


Assuntos
Variação Genética , Pinus/genética , Adaptação Fisiológica , Mudança Climática , Secas , Espécies em Perigo de Extinção , Noroeste dos Estados Unidos , Pinus/fisiologia , Plântula/genética , Plântula/fisiologia , Temperatura
11.
Mol Biol Evol ; 32(3): 555-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534032

RESUMO

Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Queratinas/genética , Pigmentação da Pele/genética , Animais , Clima , Genômica , Humanos , Macaca/genética , Pan troglodytes/genética , Seleção Genética/genética
12.
Oecologia ; 181(2): 401-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26868523

RESUMO

Variation in seed size and dormancy can take the form of seed heteromorphism, i.e., production of different kinds of seeds by a single individual. In this paper, I tested for the effect of seed position within a spikelet on its germination over time, and the contribution of this effect to population differentiation along an aridity gradient in an annual grass, Triticum dicoccoides. The results show that the upper grain in a spikelet is larger than the bottom grain, and either germinates in the season following dispersal, or dies. In contrast, a substantial fraction of the bottom grains do not germinate in the first season, but remain dormant in the soil seed bank for 1 and, very rarely, 2 years. This pattern was observed in seeds of all origins, but the bottom grains from the most arid location had the lowest, and from the least arid location, the highest germination fraction in the 1st year and vice versa in the 2nd year. This difference in germination fraction was observed under controlled irrigation conditions but not in the field experiment. These mixed results suggest that seed dimorphism is a life history trait with a complicated evolutionary history and wide adaptive implications. Seed dimorphism in T. dicoccoides could initially be an adaptation for reducing competition in productive (i.e., high precipitation) environments. In addition to this, seed dimorphism under increasing aridity could become a bet-hedging trait allowing a population to survive periods of insufficient rainfall through dormancy.


Assuntos
Germinação , Triticum , Poaceae , Sementes , Solo
13.
Poult Sci ; 95(2): 400-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839415

RESUMO

The major histocompatibility complex (MHC) is a multi-family gene cluster that encodes proteins with immuno-responsive function. While studies of MHC in domesticated poultry are relatively common, very little is known about this highly polymorphic locus in wild Red Junglefowl (Gallus gallus), the natural progenitor of domestic chickens. We investigated the diversity of MHC within and among four wild Red Junglefowl populations across diversified natural habitats in South Central Vietnam. Based on a SNP panel of 84 sites spanning 210 Kb of the MHC-B locus, we identified 310 unique haplotypes in 398 chromosomes. None of these haplotypes have been described before and we did not observe any of the wild Red Junglefowl haplotypes in domesticated chickens. Analysis of molecular variance (AMOVA) revealed that 94.51% of observed haplotype variation was accounted for at the within individual level. Little genetic variance was apportioned within and among populations, the latter accounting only for 0.83%. We also found evidence of increased recombination, including numerous hotspots, and limited linkage disequilibrium among the 84 SNP sites. Compared to an average haplotype diversity of 3.55% among seventeen lines of domestic chickens, our results suggest extraordinarily high haplotype diversity remains in wild Red Junglefowl and is consistent with a pattern of balancing selection. Wild Red Junglefowl in Vietnam, therefore, represent a rich resource of natural genomic variation independent from artificial selection.


Assuntos
Galinhas/genética , Variação Genética , Complexo Principal de Histocompatibilidade , Animais , Animais Selvagens/genética , Feminino , Haplótipos , Masculino , Filogenia , Vietnã
14.
Proc Biol Sci ; 281(1790)2014 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-25056619

RESUMO

Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.


Assuntos
Ecossistema , Genética Populacional , Densidade Demográfica , Truta/genética , Adaptação Biológica , Animais , Evolução Biológica , Deriva Genética , Terra Nova e Labrador , Polimorfismo Genético , Rios
15.
New Phytol ; 204(1): 215-229, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24942459

RESUMO

Lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana) hybridize in western Canada, an area of recent mountain pine beetle range expansion. Given the heterogeneity of the environment, and indications of local adaptation, there are many unknowns regarding the response of these forests to future outbreaks. To better understand this we aim to identify genetic regions that have adaptive potential. We used data collected on 472 single nucleotide polymorphism (SNP) loci from 576 tree samples collected across 13 lodgepole pine-dominated sites and four jack pine-dominated sites. We looked at the relationship of genetic diversity with the environment, and we identified candidate loci using both frequency-based (arlequin and bayescan) and correlation-based (matsam and bayenv) methods. We found contrasting relationships between environmental variation and genetic diversity for the species. While we identified a number of candidate outliers (34 in lodgepole pine, 25 in jack pine, and 43 interspecific loci), we did not find any loci in common between lodgepole and jack pine. Many of the outlier loci identified were correlated with environmental variation. Using rigorous criteria we have been able to identify potential outlier SNPs. We have also found evidence of contrasting environmental adaptations between lodgepole and jack pine which could have implications for beetle spread risk.


Assuntos
Variação Genética , Pinus/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , Evolução Biológica , Canadá , Ecossistema , Meio Ambiente , Genética Populacional , Heterozigoto , Hibridização Genética , Modelos Genéticos , Pinus/fisiologia , Seleção Genética
16.
Mar Biotechnol (NY) ; 26(1): 60-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147145

RESUMO

Understanding the genetic composition and regional adaptation of marine species under environmental heterogeneity and fishing pressure is crucial for responsible management. In order to understand the genetic diversity and adaptability of yellowfin seabream (Acanthopagrus latus) along southern China coast, this study was conducted a seascape genome analysis on yellowfin seabream from the ecologically diverse coast, spanning over 1600 km. A total of 92 yellowfin seabream individuals from 15 sites were performed whole-genome resequencing, and 4,383,564 high-quality single nucleotide polymorphisms (SNPs) were called. By conducting a genotype-environment association analysis, 29,951 adaptive and 4,328,299 neutral SNPs were identified. The yellowfin seabream exhibited two distinct population structures, despite high gene flow between sites. The seascape genome analysis revealed that genetic structure was influenced by a variety of factors including salinity gradients, habitat distance, and ocean currents. The frequency of allelic variation at the candidate loci changed with the salinity gradient. Annotation of these loci revealed that most of the genes are associated with osmoregulation, such as kcnab2a, kcnk5a, and slc47a1. These genes are significantly enriched in pathways associated with ion transport including G protein-coupled receptor activity, transmembrane signaling receptor activity, and transporter activity. Overall, our findings provide insights into how seascape heterogeneity affects adaptive evolution, while providing important information for regional management in yellowfin seabream populations.


Assuntos
Perciformes , Dourada , Humanos , Animais , Dourada/genética , Dourada/metabolismo , Perciformes/genética , Osmorregulação , China
17.
Mol Ecol ; 22(20): 5098-111, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23998762

RESUMO

Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co-occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome-wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next-generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single-nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North-east Atlantic.


Assuntos
Migração Animal , Ecótipo , Gadus morhua/genética , Genética Populacional , Animais , Oceano Atlântico , Ligação Genética , Genótipo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Análise de Sequência de DNA
18.
Am J Bot ; 100(10): 1957-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24061213

RESUMO

PREMISE OF THE STUDY: Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem. • METHODS: Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified. • KEY RESULTS: At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas). • CONCLUSIONS: Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments.


Assuntos
Andropogon/anatomia & histologia , Andropogon/genética , Meio Ambiente , Variação Genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Chuva , Geografia , Illinois , Kansas , Análise dos Mínimos Quadrados , Folhas de Planta/citologia , Feixe Vascular de Plantas/anatomia & histologia , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento
19.
Plant Mol Biol Report ; 31: 978-990, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24415843

RESUMO

Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations (FST = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically (P > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.

20.
Ecol Evol ; 13(3): e9926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006890

RESUMO

Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa