Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2221002120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036993

RESUMO

A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 µg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 µg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.

2.
Small ; 20(12): e2307843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948442

RESUMO

Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.

3.
Small ; : e2401214, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884200

RESUMO

Nowadays, capacitive deionization (CDI) has emerged as a prominent technology in the desalination field, typically utilizing porous carbons as electrodes. However, the precise significance of electrode properties and operational conditions in shaping desalination performance remains blurry, necessitating numerous time-consuming and resource-intensive CDI experiments. Machine learning (ML) presents an emerging solution, offering the prospect of predicting CDI performance with minimal investment in electrode material synthesis and testing. Herein, four ML models are used for predicting the CDI performance of porous carbons. Among them, the gradient boosting model delivers the best performance on test set with low root mean square error values of 2.13 mg g-1 and 0.073 mg g-1 min-1 for predicting desalination capacity and rate, respectively. Furthermore, SHapley Additive exPlanations is introduced to analyze the significance of electrode properties and operational conditions. It highlights that electrolyte concentration and specific surface area exert a substantially more influential role in determining desalination performance compared to other features. Ultimately, experimental validation employing metal-organic frameworks-derived porous carbons and biomass-derived porous carbons as CDI electrodes is conducted to affirm the prediction accuracy of ML models. This study pioneers ML techniques for predicting CDI performance, offering a compelling strategy for advancing CDI technology.

4.
Environ Res ; 243: 117816, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056614

RESUMO

Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.


Assuntos
Estruturas Metalorgânicas , Fósforo , Água , Ecossistema , Fosfatos , Adsorção
5.
Environ Res ; 244: 117964, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135102

RESUMO

In this study, we evaluate the efficiency of two novel nanostructured adsorbents - chitosan-graphitic carbon nitride@magnetite (CS-g-CN@Fe3O4) and graphitic carbon nitride@copper/zinc nanocomposite (g-CN@Cu/Zn NC) - for the rapid removal of methylparaben (MPB) from water. Our characterization methods, aimed at understanding the adsorbents' structures and surface areas, informed our systematic examination of influential parameters including sonication time, adsorbent dosage, initial MPB concentration, and temperature. We applied advanced modeling techniques, such as response surface methodology (RSM), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN), to evaluate the adsorption process. The adsorbents proved highly effective, achieving maximum adsorption capacities of 255 mg g-1 for CS-g-CN@Fe3O4 and 218 mg g-1 for g-CN@Cu/Zn NC. Through genetic algorithm (GA) optimization, we identified the optimal conditions for the highest MPB removal efficiency: a sonication period of 12.00 min and an adsorbent dose of 0.010 g for CS-g-CN@Fe3O4 NC, with an MPB concentration of 17.20 mg L-1 at 42.85 °C; and a sonication time of 10.25 min and a 0.011 g dose for g-CN@Cu/Zn NC, with an MPB concentration of 13.45 mg L-1 at 36.50 °C. The predictive accuracy of the RBFNN and GRNN models was confirmed to be satisfactory. Our findings demonstrate the significant capabilities of these synthesized adsorbents in effectively removing MPB from water, paving the way for optimized applications in water purification.


Assuntos
Grafite , Compostos de Nitrogênio , Parabenos , Poluentes Químicos da Água , Purificação da Água , Cobre/química , Temperatura , Água/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
6.
Int J Phytoremediation ; 26(7): 1154-1167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38149624

RESUMO

The discharge of colored effluent into water bodies is a big concern; hence, the current work was designed to fabricate a superior nanocomposite (NBM) using the Newbouldia laevis husk (NB) and functionalized multiwalled carbon nanotubes (f-MWCNTs) for the adsorption of malachite green oxalate (MGO). Brunauer-Emmett-Teller (BET) surface analysis was used to assess the specific surface area of NB (0.7699 m2 g-1) and NBM (94.006 m2 g-1). Fourier transform infrared spectroscopy (FTIR) was employed to determine the chemical moieties on the surface of the adsorbent. Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA) were used to analyze the surface morphology and the thermal behavior of the adsorbents. Essential factors of the adsorption process were investigated, and it was revealed that pH 6.0, adsorbent dose of 0.05 g, contact time 80 min, concentration of 100 mg dm-3 and maximum adsorption capacity of 35.78 mg g-1 (NB) and 69.97 mg g-1 (NBM) were the optimal parameters. The NB and NBM adsorption processes followed a pseudo-first-order kinetic model. The exothermic and endothermic adsorptive processes were noticed to be the best descriptions of MGO elimination by NB and NBM, respectively. The uptake of MGO by NB and NBM was best described by models of Freundlich and Langmuir isotherms. Besides, NBM demonstrated uptake efficiency that is >80% after the fourth adsorption/desorption cycle. As a result, NBM has a wide range of possible uses in environmental remediation.


The husk of Newbouldia laevis is a frequent waste that must be managed properly. This paper describes the application of Newbouldia laevis husk as a value-added material for the design of a water treatment agent. The use of carbon nanotube in the modification of Newbouldia laevis husk would have a synergistic effect on the overall property of the nanocomposite. Nanocomposite synthesized from multiwalled carbon nanotubes (MWCNTs) and Newbouldia laevis husk were characterized and used for the sequestration of malachite green oxalate from contaminated water. Our primary goal is to optimize the nanocomposite by varying factors of adsorption such as solution pH, equilibrium, kinetic, thermodynamic, and regeneration studies. We believe that this study will contribute to the existing knowledge of Newbouldia laevis husk. Owing to the exceptional potential of the nanocomposite, this adsorbent can be extended to possible field applications.


Assuntos
Nanocompostos , Nanotubos de Carbono , Corantes de Rosanilina , Termodinâmica , Poluentes Químicos da Água , Corantes de Rosanilina/química , Cinética , Adsorção , Nanotubos de Carbono/química , Biodegradação Ambiental , Oxalatos/química
7.
Int J Phytoremediation ; 26(1): 98-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37390844

RESUMO

The applicability of Zeolitic Imidazolate-67, Modified by Fe3O4 Nanoparticles, was studied for removing textile dye Reactive yellow 105 from wastewater by adsorption method using response surface methodology (RSM). For the adsorption characterization of the adsorbent used in HE-4G dye adsorption, BET, FTIR, XRD, and SEM analyses were performed. The impacts of variables, including initial HE-4G dye concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4), the highest removal efficiency as 98%, 10 mg/L initial concentration, pH 6, 0.025 g adsorbent dosage, and 6.0 min time respectively. Adsorption equilibrium and kinetic data it, that data were for the Langmuir isotherm, pseudo-second-order kinetics, and maximum adsorption capacity (105.0 mg/g), respectively. Thermodynamic parameters indicated HE-4G dye adsorption is feasible, spontaneous and exothermic. Promising treatment capabilities of the ZIF-67-Fe3O4NPs have been during the comparative adsorption removal of HE-4G dye from DI water against spiked natural water samples and synthetic Na+, K+, Ca2+, and Mg2+ solutions. The observed outcome is the suitability of the artificial neural network model as a tool for mean square error, (MSEANN = 0.53, and R2 = 0.9926) for removing HE-4G dye. Results that ZIF-67-Fe3O4NPs, like being recyclable, and cost-efficient made it a promising absorbent for wastewater.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Águas Residuárias , Purificação da Água/métodos , Biodegradação Ambiental , Redes Neurais de Computação , Água/análise , Têxteis , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
8.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611839

RESUMO

Geopolymers show great potential in complex wastewater treatment to improve water quality. In this work, general geopolymers, porous geopolymers and geopolymer microspheres were prepared by the suspension curing method using three solid waste products, coal gangue, fly ash and blast furnace slag. The microstructure, morphology and surface functional groups of the geopolymers were studied by SEM, XRD, XRF, MIP, FTIR and XPS. It was found that the geopolymers possess good adsorption capacities for both organic and inorganic pollutants. With methylene blue and potassium dichromate as the representative pollutants, in order to obtain the best removal rate, the effects of the adsorbent type, dosage of adsorbent, concentration of methylene blue and potassium dichromate and pH on the adsorption process were studied in detail. The results showed that the adsorption efficiency of the geopolymers for methylene blue and potassium dichromate was in the order of general geopolymers < porous geopolymers < geopolymer microspheres, and the removal rates were up to 94.56% and 79.46%, respectively. Additionally, the competitive adsorption of methylene blue and potassium dichromate in a binary system was also studied. The mechanism study showed that the adsorption of methylene blue was mainly through pore diffusion, hydrogen bond formation and electrostatic adsorption, and the adsorption of potassium dichromate was mainly through pore diffusion and redox reaction. These findings demonstrate the potential of geopolymer microspheres in adsorbing organic and inorganic pollutants, and, through five cycles of experiments, it is demonstrated that MGP exhibits excellent recyclability.

9.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124950

RESUMO

This study aimed to investigate the efficacy of biochar, produced from different agricultural residues varying in lignin and cellulose content and subjected to different pyrolysis temperatures, in removing cadmium ions (Cd (II)) from an aqueous solution. This removal process is crucial for protecting human health and the environment. Specifically, the study focused on the adsorption behaviors of Cd (II) by the biochars made from rice husk biochar (RHB), maize straw biochar (MSB), peanut shell biochar (PSB), cottonseed shell biochar (CHB), and mulberry leaf biochar (MLB), which were prepared at 300 °C and 600 °C. The results indicated that the type of agricultural residue used to produce biochar significantly influenced the adsorption of Cd (II). Notably, mulberry leaf biochar prepared at 300 °C (MLB-300) demonstrated the highest adsorption efficiency, achieving a maximum adsorption capacity of 42.2 mg g-1. Batch adsorption experiments assessed the impact of various factors, including system pH, NO3- concentration, and adsorption duration. The adsorption kinetics were better described by the pseudo-second-order model than the pseudo-first-order model. Moreover, the study found that the lignin content of the biochar plays a major role in determining the adsorption capacity. The surface characteristics of biochar, influenced by the types of agricultural residues and preparation temperature, directly impact its adsorption mechanism and capacity. While biochar produced at 300 °C showed optimal Cd(II) adsorption, those processed at 600 °C were less effective, likely due to the loss of functional groups at higher temperatures.


Assuntos
Cádmio , Carvão Vegetal , Carvão Vegetal/química , Cádmio/análise , Cádmio/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Agricultura/métodos , Cinética , Concentração de Íons de Hidrogênio , Água/química , Purificação da Água/métodos , Temperatura , Soluções
10.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542828

RESUMO

The dynamic adsorption characteristics of K2CO3-promoted layered double hydroxides (LDHs)-based adsorbent, with organic and inorganic anion intercalation, were studied. MgAl-LDH, K2CO3/MgAl-LDH, and K2CO3/MgAl-LDH(C16) with varying K2CO3 loads were prepared and used for intermediate-temperature CO2 sequestration. The adsorbent was thoroughly characterized using X-ray diffraction, Brunauer-Emmett-Teller, scanning electron microscopy, and Fourier Transform Infrared Spectroscopy techniques, which revealed enhanced adsorption properties of MgAl-LDH, due to K2CO3 promotion. Thermogravimetric CO2 adsorption tests on the constructed adsorbent materials showed that the 12.5 wt% K2CO3/MgAl-LDH(C16) adsorbent with organic anion intercalation exhibited optimal adsorption activity, achieving an adsorption capacity of 1.12 mmol/g at 100% CO2 and 350 °C. However, fixed-bed dynamic adsorption tests yielded different results; the 25 wt% K2CO3/MgAl-LDH prepared through inorganic anion intercalation exhibited the best adsorption performance in low-concentration CO2 penetration tests. The recorded penetration time was 93.1 s, accompanied by an adsorption capacity of 0.722 mmol/g. This can be attributed to the faster adsorption kinetics exhibited by the 25 wt% K2CO3/MgAl-LDH adsorbent during the early stages of adsorption, thereby facilitating efficient CO2 capture in low-concentration CO2 streams. This is a conclusion that differs from previous reports. Earlier reports indicated that LDHs with organic anion intercalation exhibited higher CO2 adsorption activity in thermogravimetric analyzer tests. However, this study found that for the fixed-bed dynamic adsorption process, K2CO3-modified inorganic anion-intercalated LDHs perform better, indicating their greater potential in practical applications.

11.
Environ Monit Assess ; 196(7): 611, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862850

RESUMO

The wastewater effluent is responsible for the major ecological impact of the dairy sectors. To avoid the negative consequences of heavy metal pollution on the ecosystem, creative, affordable, and efficient treatment methods are now required before the effluent flows into the surrounding area. This study was aimed at assessing the effectiveness of three different adsorbents for Cd+2 and Cr+6 ions from wastewater effluents of dairy farms, including chitosan (CS), clinoptilolite zeolite (CZ), and chitosan/clinoptilolite zeolite (CS/CZ) composite. The adsorption kinetics of the CS/CZ composite were established using the effects of the key variables (pH, agitation speed, adsorbent concentrations, and contact durations). The removal (%) and adsorption capacities, qe (mg/g), were calculated using the data from the adsorption kinetics. Wastewater samples (n = 60) were collected from the wastewater effluents of five farms. Cd+2 and Cr+6 ion concentrations in all collected samples were determined. Following the CS/CZ composite creation, it was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (X-RD), and Fourier-transform infrared spectrum (FT-IR). The CS/CZ composite had an adsorption capacity of 92.4 and 96.5 mg/g for both Cd+2 and Cr+6 ions at a concentration of 2.0 g/100 ml, respectively, while the CZ adsorption capacities for the two ions were 87.5 mg/g and 61.0 mg/g, respectively, at 4.0 g/100 ml concentration. The CS was achieved at 55.56 mg/g and 33.3 mg/g, respectively, at the same concentration. The efficiency of heavy metal removal was enhanced by increasing adsorbent concentration, agitation speed, and contact duration. Using CS/CZ composite at 2.0 g/100 ml concentration, 180 min of contact time, and 300 rpm agitation speed, the greatest removal efficiencies for Cd+2 and Cr+6 ions (96.43 and 98.75%, respectively) were demonstrated.


Assuntos
Cádmio , Quitosana , Indústria de Laticínios , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Quitosana/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Adsorção , Cádmio/análise , Animais , Eliminação de Resíduos Líquidos/métodos , Bovinos , Cromo/análise , Cromo/química , Fazendas , Purificação da Água/métodos
12.
J Environ Sci (China) ; 139: 160-169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105044

RESUMO

The effective and affordable separation of oil and water, a crucial process in the safe handling of environmental disasters such as crude oil spills and recovery of valuable resources, is a highly sought-after yet challenging task. Herein, superhydrophobic PU sponge was fabricated for the fast and cost-effective adsorptive separation of oil and different organic solvents from water. Octadecyltrichlorosilane (OTS)-functionalized Fe3O4@SiO2 core-shell microspheres were dip-coated on the surface of porous materials via a dip-coating process, thereby endowing them with superhydrophobicity. Owing to the hydrophobic interaction between OTS molecules and oil and increased capillary force in the micropores, the resulting superhydrophobic sponge served as a selective oil-sorbent scaffold for absorbing oil from oil-water mixtures, including oil-water suspensions and emulsions. Remarkably, after the recovery of the adsorbed oil via mechanical extrusion, these superhydrophobic materials could be reused multiple times and maintain their oil-water separation efficacy even after 10 oil-water separation cycles.


Assuntos
Poluição por Petróleo , Poliuretanos , Dióxido de Silício , Fenômenos Físicos , Poluição por Petróleo/prevenção & controle , Fenômenos Magnéticos
13.
Angew Chem Int Ed Engl ; 63(27): e202400849, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656826

RESUMO

As a critical radioactive anionic contaminant, traditional adsorbents primarily remove iodate (IO3 -) through ion exchange or hard acid-hard base interactions, but suffer from limited affinity and capacity. Herein, employing the synergistic effect of ion exchange and redox, we successfully synthesized a redox-active cationic polymer network (SCU-CPN-6, [C9H10O2N5 ⋅ Cl]n) by merging guanidino groups with ion-exchange capability and phenolic groups with redox ability via a Schiff base reaction. SCU-CPN-6 exhibits a groundbreaking adsorption capacity of 896 mg/g for IO3 -. The inferior adsorption capacities of polymeric networks containing only redox (~0 mg/g) or ion exchange (232 mg/g) fragments underscore the synergistic "1+1>2" effect of the two mechanisms. Besides, SCU-CPN-6 shows excellent uptake selectivity for IO3 - in the presence of high concentrations of SO4 2-, Cl-, and NO3 -. Meanwhile, a high distribution coefficient indicates its exemplary deep-removal performance for low IO3 - concentration. The synergic strategy not only presents a breakthrough solution for the efficient removal of IO3 - but also establishes a promising avenue for the design of advanced adsorbents for diverse applications.

14.
Environ Res ; 222: 115346, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702189

RESUMO

Large amounts of microplastics (MPs) enter the soil along with the amendment of sludge to soil. However, it is still unclear about the response of MPs occurrence and the adsorption behaviors of cadmium (Cd)on MPs to typical agricultural environmental scenarios. In present work, three kinds of MPs (polyethylene, polypropylene, and polystyrene) were chosen to investigate that response in three agricultural environmental scenarios with sludge-amended soil, including dry-wet alteration (7 d, five cycles), microbial addition (Bacillus subtilis, 0.05 g/g soil), and Ultraviolet (UV) irradiation (340 nm, 4 × 15 W, 4 d). The results showed that there was the highest adsorption capacity of Cd on MPs (36.21, 45.15, 12.43 µg/g for PE, PP, PS, respectively) after UV irradiation exceeding those from MPs triggered by other two scenarios). UV irradiation caused an increase in the abundance of Streptomyces, an expansion in specific surface area, a significant change in surface morphologies, an improvement in crystallinity or the formation of new crystals, and an enhancement in C-O and CO content, and then resulted in the incremental adsorption capacity of Cd on MPs. The findings are important of significance for controlling the environmental risks from sludge MPs via carrying heavy metals in the soil-plant systems.


Assuntos
Microplásticos , Poluentes do Solo , Plásticos , Cádmio , Solo , Esgotos , Poluentes do Solo/análise
15.
Environ Res ; 238(Pt 1): 117133, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729960

RESUMO

Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Humanos , Metais , Piperazinas , Adsorção , Cinética , Concentração de Íons de Hidrogênio
16.
Environ Res ; 237(Pt 2): 116959, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619628

RESUMO

Biochar is widely used to remove organic pollutants from the environment. Several studies have focused on pollutant removal via biochar adsorption. However, research on the subsequent processing of pollutant-adsorbed biochar is lacking. This study explored the potential of biochar for the adsorption of an aquatic organic pollutant (tetracycline) and its subsequent use as a solid biofuel. These results suggest that corn straw-derived biochar (torrefaction and pyrolysis) is suitable for two-stage utilization to achieve bioresource valorization for environmental sustainability. Tetracycline-adsorbed biochar, particularly biochar pyrolyzed at 600 °C, is suitable for use as a biofuel. The biochar produced via torrefaction (300 °C) and pyrolysis (600 °C) is the optimal choice, with surface area, contact angle, graphitization degree, calorific value, enhancement factor, and upgrading energy index values of 172.48 m2/g, 120.4°, 3.87, 26.983 MJ/kg, 1.58, and 33.72, respectively. This is supported by the results of expense calculation, comprehensive performance analysis, and life-cycle assessment. Overall, the biochar produced in this study is suitable for organic pollutant removal and as solid biofuel; thus, it can be used to realize waste utilization for environmental sustainability.

17.
Int J Phytoremediation ; 25(11): 1397-1412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36564869

RESUMO

This study attempted to investigate the adsorptive potential of blended bamboo (Oxytenanthera abyssinica) sawdust/rice husk (BSD/RH) at a ratio of 1:1 carbonized at 400 °C for the sorption of cadmium ions from synthetic solutions in batch mode. The Box-Behnken Design in response surface methodology (RSM) was used to achieve the best removal efficiency and adsorption capacity of the biochar. With a p-value of 0.0001, the initial Cd2+ concentration and adsorbent dose were discovered to be the most significant parameters controlling the adsorption capacity and removal efficiency of Cd2+ from the solution. At a pH of 8.95, ionic strength of 0.020 mol/L KNO3, a contact time of 15 min, an initial concentration of 200 mg/L, and an adsorbent dose of 0.5 g, the optimum Cd2+ removal and adsorption capacity of 99.97% and 358.65 mg/g, respectively, were obtained. The optimized conditions were later used to determine the removal efficiency and adsorption capacity of pristine biochars of rice husk and bamboo sawdust, which were found to be 79.8% and 83.7%, respectively. This finding indicates the potential for using biosorbent derived from blended feedstock materials to remove heavy metals such as cadmium.


Many studies investigated the pollutant removal potential of agricultural wastes as single feedstock adsorbent materials. The novel aspect of this study is that it examines their potentials on Cd2+ removal by combining two feedstocks (bamboo saw dust and rice husk) while optimizing the common influencing factors. Furthermore, a comparative analytical study was carried out between the blended feedstock biochar and their respective pristine ones. According to the findings, using blended biochar instead of pristine biochar results in a significant increase in Cd removal efficiency.


Assuntos
Oryza , Poluentes Químicos da Água , Cádmio , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Carvão Vegetal , Adsorção , Água , Cinética
18.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049773

RESUMO

Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P-ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry.

19.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836799

RESUMO

It is very well known that traditional artificial neural networks (ANNs) are prone to falling into local extremes when optimizing model parameters. Herein, to enhance the prediction performance of Cu(II) adsorption capacity, a particle swarm optimized artificial neural network (PSO-ANN) model was developed. Prior to predicting the Cu(II) adsorption capacity of modified pomelo peels (MPP), experimental data collected by our research group were used to build a consistent database. Then, a PSO-ANN model was established to enhance the model performance by optimizing the ANN's weights and biases. Finally, the performances of the developed ANN and PSO-ANN models were deeply evaluated. The results of this investigation revealed that the proposed hybrid method did increase both the generalization ability and the accuracy of the predicted data of the Cu(II) adsorption capacity of MPPs when compared to the conventional ANN model. This PSO-ANN model thus offers an alternative methodology for optimizing the adsorption capacity prediction of heavy metals using agricultural waste biosorbents.

20.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677641

RESUMO

The long-term biodistribution of non-biodegradable microstructures or nanostructures used in vaccinations is widely unknown. This is the case for aluminum oxyhydroxide, the most widely used vaccine adjuvant, which is a nanocrystalline compound that spontaneously forms nanoprecipitates. Although generally well-tolerated, aluminum oxyhydroxide is detected in macrophages a long time after vaccination in individuals predisposed to the development of systemic and neurological aspects of the autoimmune (inflammatory) syndrome induced by modified adjuvant. In the present study, we established that the terminal sterilization of aluminum oxyhydroxide by autoclaving in final container vials produced measurable changes in its physicochemical properties. Moreover, we found that these changes included (1) a decreasing in the pH of aluminum oxyhydroxide solutions, (2) a reduction in the adsorption capacity of bovine serum albumin, (3) a shift in the angle of X-ray diffraction, (4) a reduction in the lattice spacing, causing the crystallization and biopersistence of modified aluminum oxyhydroxide in the macrophage, as well as in muscle and the brain.


Assuntos
Alumínio , Vacinas , Humanos , Distribuição Tecidual , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos , Vacinas/química , Hidróxido de Alumínio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa