Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Infect Dis ; 224(12 Suppl 2): S299-S306, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469559

RESUMO

Large populations across sub-Saharan Africa remain at risk of devastating acute bacterial meningitis epidemics and endemic disease. Meningitis surveillance is a cornerstone of disease control, essential for describing temporal changes in disease epidemiology, the rapid detection of outbreaks, guiding vaccine introduction and monitoring vaccine impact. However, meningitis surveillance in most African countries is weak, undermined by parallel surveillance systems with little to no synergy and limited laboratory capacity. African countries need to implement comprehensive meningitis surveillance systems to adapt to the rapidly changing disease trends and vaccine landscapes. The World Health Organization and partners have developed a new investment case to restructure vaccine-preventable disease surveillance. With this new structure, countries will establish comprehensive and sustainable meningitis surveillance systems integrated with greater harmonization between population-based and sentinel surveillance systems. There will also be stronger linkage with existing surveillance systems for vaccine-preventable diseases, such as polio, measles, yellow fever, and rotavirus, as well as with other epidemic-prone diseases to leverage their infrastructure, transport systems, equipment, human resources and funding. The implementation of these concepts is currently being piloted in a few countries in sub-Saharan Africa with support from the World Health Organization and other partners. African countries need to take urgent action to improve synergies and coordination between different surveillance systems to set joint priorities that will inform action to control devastating acute bacterial meningitis effectively.


Assuntos
Meningites Bacterianas/prevenção & controle , Meningite Meningocócica/prevenção & controle , Neisseria meningitidis , Vigilância de Evento Sentinela , Vacinação , África Subsaariana/epidemiologia , Humanos , Meningite Meningocócica/epidemiologia
2.
J Infect Dis ; 220(220 Suppl 4): S190-S197, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31671437

RESUMO

In 2016, Mali reported a bacterial meningitis outbreak consisting of 39 suspected cases between epidemiologic weeks 9 and 17 with 15% case fatality ratio in the health district of Ouéléssebougou, 80 kilometers from the capital Bamako. Cerebrospinal fluid specimens from 29 cases were tested by culture and real-time polymerase chain reaction; 22 (76%) were positive for bacterial meningitis pathogens, 16 (73%) of which were Neisseria meningitidis (Nm). Of the Nm-positive specimens, 14 (88%) were N meningitidis serogroup C (NmC), 1 was NmW, and 1 was nongroupable. Eight NmC isolates recovered by culture from the outbreak were characterized using whole genome sequencing. Genomics analysis revealed that all 8 isolates belonged to a new sequence type (ST) 12446 of clonal complex 10217 that formed a distinct clade genetically similar to ST-10217, a NmC strain that recently caused large epidemics of meningitis in Niger and Nigeria. The emergence of a new ST of NmC associated with an outbreak in the African meningitis belt further highlights the need for continued molecular surveillance in the region.


Assuntos
Surtos de Doenças , Genótipo , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Neisseria meningitidis Sorogrupo C/genética , Adolescente , Adulto , Criança , Feminino , Variação Genética , Genoma Bacteriano , Geografia Médica , História do Século XXI , Humanos , Masculino , Mali/epidemiologia , Meningite Meningocócica/diagnóstico , Meningite Meningocócica/história , Neisseria meningitidis Sorogrupo C/classificação , Filogenia , Estações do Ano , Sequenciamento Completo do Genoma , Adulto Jovem
3.
J Infect Dis ; 220(220 Suppl 4): S140-S147, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31671448

RESUMO

BACKGROUND: A novel meningococcal serogroup A conjugate vaccine (MACV [MenAfriVac]) was developed as part of efforts to prevent frequent meningitis outbreaks in the African meningitis belt. The MACV was first used widely and with great success, beginning in December 2010, during initial deployment in Burkina Faso, Mali, and Niger. Since then, MACV rollout has continued in other countries in the meningitis belt through mass preventive campaigns and, more recently, introduction into routine childhood immunization programs associated with extended catch-up vaccinations. METHODS: We reviewed country reports on MACV campaigns and routine immunization data reported to the World Health Organization (WHO) Regional Office for Africa from 2010 to 2018, as well as country plans for MACV introduction into routine immunization programs. RESULTS: By the end of 2018, 304 894 726 persons in 22 of 26 meningitis belt countries had received MACV through mass preventive campaigns targeting individuals aged 1-29 years. Eight of these countries have introduced MACV into their national routine immunization programs, including 7 with catch-up vaccinations for birth cohorts born after the initial rollout. The Central African Republic introduced MACV into its routine immunization program immediately after the mass 1- to 29-year-old vaccinations in 2017 so no catch-up was needed. CONCLUSIONS: From 2010 to 2018, successful rollout of MACV has been recorded in 22 countries through mass preventive campaigns followed by introduction into routine immunization programs in 8 of these countries. Efforts continue to complete MACV introduction in the remaining meningitis belt countries to ensure long-term herd protection.


Assuntos
Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo A/imunologia , Vacinas Conjugadas/imunologia , África/epidemiologia , Surtos de Doenças , Feminino , Geografia Médica , Humanos , Programas de Imunização , Imunização Secundária , Masculino , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo A/classificação , Vigilância em Saúde Pública , Vacinação , Vacinas Conjugadas/administração & dosagem
4.
Trop Med Int Health ; 24(2): 143-154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461138

RESUMO

OBJECTIVE: To review the findings of studies of pharyngeal carriage of Neisseria meningitidis and related species conducted in the African meningitis belt since a previous review published in 2007. METHODS: PubMed and Web of Science were searched in July 2018 using the terms 'meningococcal OR Neisseria meningitidis OR lactamica AND carriage AND Africa', with the search limited to papers published on or after 1st January 2007. We conducted a narrative review of these publications. RESULTS: One hundred and thirteen papers were identified using the search terms described above, 20 of which reported new data from surveys conducted in an African meningitis belt country. These papers described 40 surveys conducted before the introduction of the group A meningococcal conjugate vaccine (MenAfriVacR ) during which 66 707 pharyngeal swabs were obtained. Carriage prevalence of N. meningitidis varied substantially by time and place, ranging from <1% to 24%. The mean pharyngeal carriage prevalence of N. meningitidis across all surveys was 4.5% [95% CI: 3.4%, 6.8%] and that of capsulated N. meningitidis was 2.8% [95% CI: 1.9%; 5.2%]. A study of households provided strong evidence for meningococcal transmission within and outside households. The introduction of MenAfriVac® led to marked reductions in carriage of the serogroup A meningococcus in Burkina Faso and Chad. CONCLUSIONS: Recent studies employing standardised methods confirm the findings of older studies that carriage of N. meningitidis in the African meningitis belt is highly variable over time and place, but generally occurs with a lower prevalence and shorter duration than reported from industrialised countries.


Assuntos
Portador Sadio/epidemiologia , Meningite Meningocócica/epidemiologia , Neisseria meningitidis/isolamento & purificação , África , Humanos , Vacinação em Massa , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo A
5.
Epidemiol Infect ; 147: e14, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30264686

RESUMO

The pathophysiological mechanisms underlying the seasonal dynamic and epidemic occurrence of bacterial meningitis in the African meningitis belt remain unknown. Regular seasonality (seasonal hyperendemicity) is observed for both meningococcal and pneumococcal meningitis and understanding this is critical for better prevention and modelling. The two principal hypotheses for hyperendemicity during the dry season imply (1) an increased risk of invasive disease given asymptomatic carriage of meningococci and pneumococci; or (2) an increased transmission of these bacteria from carriers and ill individuals. In this study, we formulated three compartmental deterministic models of seasonal hyperendemicity, featuring one (model1-'inv' or model2-'transm'), or a combination (model3-'inv-transm') of the two hypotheses. We parameterised the models based on current knowledge on meningococcal and pneumococcal biology and pathophysiology. We compared the three models' performance in reproducing weekly incidences of suspected cases of acute bacterial meningitis reported by health centres in Burkina Faso during 2004-2010, through the meningitis surveillance system. The three models performed well (coefficient of determination R2, 0.72, 0.86 and 0.87, respectively). Model2-'transm' and model3-'inv-transm' better captured the amplitude of the seasonal incidence. However, model2-'transm' required a higher constant invasion rate for a similar average baseline transmission rate. The results suggest that a combination of seasonal changes of the risk of invasive disease and carriage transmission is involved in the hyperendemic seasonality of bacterial meningitis in the African meningitis belt. Consequently, both interventions reducing the risk of nasopharyngeal invasion and the bacteria transmission, especially during the dry season are believed to be needed to limit the recurrent seasonality of bacterial meningitis in the meningitis belt.

6.
BMC Genomics ; 18(1): 398, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532434

RESUMO

BACKGROUND: Serogroup A Neisseria meningitidis (NmA) was the cause of the 2011 meningitis epidemics in Chad. This bacterium, often carried asymptomatically, is considered to be an "accidental pathogen"; however, the transition from carriage to disease phenotype remains poorly understood. This study examined the role genetic diversity might play in this transition by comparing genomes from geographically and temporally matched invasive and carried NmA isolates. RESULTS: All 23 NmA isolates belonged to the ST-5 clonal complex (cc5). Ribosomal MLST comparison with other publically available NmA:cc5 showed that isolates were closely related, although those from Chad formed two distinct branches and did not cluster with other NmA, based on their MLST profile, geographical and temporal location. Whole genome MLST (wgMLST) comparison identified 242 variable genes among all Chadian isolates and clustered them into three distinct phylogenetic groups (Clusters 1, 2, and 3): no systematic clustering by disease or carriage source was observed. There was a significant difference (p = 0.0070) between the mean age of the individuals from which isolates from Cluster 1 and Cluster 2 were obtained, irrespective of whether the person was a case or a carrier. CONCLUSIONS: Whole genome sequencing provided high-resolution characterization of the genetic diversity of these closely related NmA isolates. The invasive meningococcal isolates obtained during the epidemic were not homogeneous; rather, a variety of closely related but distinct clones were circulating in the human population with some clones preferentially colonizing specific age groups, reflecting a potential age-related niche adaptation. Systematic genetic differences were not identified between carriage and disease isolates consistent with invasive meningococcal disease being a multi-factorial event resulting from changes in host-pathogen interactions along with the bacterium.


Assuntos
Doenças Assintomáticas/epidemiologia , Epidemias , Genômica , Meningite Meningocócica/epidemiologia , Neisseria meningitidis/genética , Neisseria meningitidis/fisiologia , Sorogrupo , Adolescente , Adulto , Chade/epidemiologia , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Humanos , Lactente , Masculino , Sequenciamento Completo do Genoma , Adulto Jovem
7.
Clin Infect Dis ; 61 Suppl 5: S404-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553667

RESUMO

BACKGROUND: Group A Neisseria meningitidis has been a major cause of bacterial meningitis in the sub-Saharan region of Africa in the meningitis belt. Neisseria meningitidis is an encapsulated pathogen, and antibodies against the capsular polysaccharide are protective. Polysaccharide-protein conjugate vaccines have proven to be highly effective against several different encapsulated bacterial pathogens. Purified polysaccharide vaccines have been used to control group A meningococcal (MenA) epidemics with minimal success. METHODS: A monovalent MenA polysaccharide-tetanus toxoid conjugate was therefore developed. This vaccine was developed by scientists working with the Meningitis Vaccine Project, a partnership between PATH and the World Health Organization. RESULTS: A high-efficiency conjugation method was developed in the Laboratory of Bacterial Polysaccharides in the Center for Biologics Evaluation and Research and transferred to the Serum Institute of India, Ltd, which then developed methods for purification of the group A polysaccharide and used its tetanus toxoid as the carrier protein to produce the now-licensed, highly effective MenAfriVac conjugate vaccine. CONCLUSIONS: Although many years of application of meningococcal polysaccharide vaccines have had minimal success in preventing meningococcal epidemics in the meningitis belt of Africa, our collaborative efforts to develop a MenA conjugate vaccine yielded a safe and highly effective vaccine.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/isolamento & purificação , Neisseria meningitidis Sorogrupo A/imunologia , Tecnologia Farmacêutica/métodos , África Subsaariana/epidemiologia , Humanos , Índia , Cooperação Internacional , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Organização Mundial da Saúde
8.
Clin Infect Dis ; 61 Suppl 5: S521-30, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553684

RESUMO

BACKGROUND: Mass vaccination campaigns of the population aged 1-29 years with 1 dose of group A meningococcal (MenA) conjugate vaccine (PsA-TT, MenAfriVac) in African meningitis belt countries has resulted in the near-disappearance of MenA. The vaccine was tested in clinical trials in Africa and in India and found to be safe and highly immunogenic compared with the group A component of the licensed quadrivalent polysaccharide vaccine (PsACWY). Antibody persistence in Africa and in India was investigated. METHODS: A total of 900 subjects aged 2-29 years were followed up for 4 years in Senegal, Mali, and The Gambia (study A). A total of 340 subjects aged 2-10 years were followed up for 1 year in India (study B). In study A, subjects were randomized in a 2:1 ratio, and in study B a 1:1 ratio to receive either PsA-TT or PsACWY. Immunogenicity was evaluated by measuring MenA serum bactericidal antibody (SBA) with rabbit complement and by a group A-specific immunoglobulin G (IgG) enzyme-linked immunosorbent assay. RESULTS: In both studies, substantial SBA decay was observed at 6 months postvaccination in both vaccine groups, although more marked in the PsACWY group. At 1 year and 4 years (only for study A) postvaccination, SBA titers were relatively sustained in the PsA-TT group, whereas a slight increasing trend, more pronounced among the youngest, was observed in the participants aged <18 years in the PsACWY groups. The SBA titers were significantly higher in the PsA-TT group than in the PsACWY group at any time point, and the majority of subjects in the PsA-TT group had SBA titers ≥128 and group A-specific IgG concentrations ≥2 µg/mL at any point in time in both the African and Indian study populations. CONCLUSIONS: Four years after vaccination with a single dose of PsA-TT vaccine in Africa, most subjects are considered protected from MenA disease. CLINICAL TRIALS REGISTRATION: PsA-TT-003 (ISRCTN87739946); PsA-TT-003a (ISRCTN46335400).


Assuntos
Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Adolescente , Adulto , África , Animais , Criança , Pré-Escolar , Proteínas do Sistema Complemento , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Índia , Masculino , Coelhos , Fatores de Tempo , Adulto Jovem
9.
Clin Infect Dis ; 61 Suppl 5: S459-66, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553675

RESUMO

BACKGROUND: The rollout of the group A meningococcal vaccine, PsA-TT, in Africa's meningitis belt countries represented the first introduction of a vaccine specifically designed for this part of the world. During the first year alone, the number of people who received the vaccine through mass vaccination campaigns was several hundredfold higher than that of subjects who participated in the closely monitored clinical trials. Implementation of a system to identify rare but potentially serious vaccine reactions was therefore a high priority in the design and implementation of those campaigns. METHODS: National authorities and their technical partners set up effective vaccine pharmacovigilance systems, including conducting active surveillance projects. RESULTS: Implementation of national expert advisory groups to review serious adverse events following immunization in all countries and active monitoring of conditions of interest in 3 early-adopter countries did not identify particular concerns with the safety profile of PsA-TT, which had already provided tremendous public health benefits. CONCLUSIONS: Lessons learned from this experience will help to improve preparations for future vaccine introductions in resource-poor settings and capitalize on such efforts to advance vaccine safety systems in the future.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/organização & administração , Monitoramento de Medicamentos/métodos , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/efeitos adversos , Farmacovigilância , Adolescente , Adulto , África , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
10.
Clin Infect Dis ; 61 Suppl 5: S514-20, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553683

RESUMO

BACKGROUND: Following mass vaccination campaigns in the African meningitis belt with group A meningococcal conjugate vaccine, MenAfriVac (PsA-TT), disease due to group A meningococci has nearly disappeared. Antibody persistence in healthy African toddlers was investigated. METHODS: African children vaccinated at 12-23 months of age with PsA-TT were followed for evaluation of antibody persistence up to 5 years after primary vaccination. Antibody persistence was evaluated by measuring group A serum bactericidal antibody (SBA) with rabbit complement and by a group A-specific IgG enzyme-linked immunosorbent assay (ELISA). RESULTS: Group A antibodies measured by SBA and ELISA were shown to decline in the year following vaccination and plateaued at levels significantly above baseline for up to 5 years following primary vaccination. CONCLUSIONS: A single dose of PsA-TT induces long-term sustained levels of group A meningococcal antibodies for up to 5 years after vaccination. CLINICAL TRIALS REGISTRATION: ISRTCN78147026.


Assuntos
Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , África , Animais , Proteínas do Sistema Complemento , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Coelhos , Fatores de Tempo
11.
Immun Inflamm Dis ; 11(7): e953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506148

RESUMO

Meningitis, a disease that commonly manifests in African meningitis belt, continues to be a public health problem as it is a fatal disease that leave survivors with long-term effects. Most cases of meningitis are due to bacterial and viral infection, although parasites, fungus, cancer, drugs, and immune disorders can rarely cause meningitis. Stiff neck, high temperature, light sensitivity, disorientation, headaches, and vomiting are the most typical symptoms of meningitis. Niger, being in African meningitis belt, has been affected by many meningitis outbreaks. Since 2015, a total of 20,789 cases and 1369 fatalities (CFR 6.6%) have been documented in Niger. In contrast to earlier seasons, the current outbreak of meningitis in Niger exhibits both an increase in the number of cases and a rise in the growth rate. A total of 559 cases of meningitis, including 18 fatalities (overall CFR 3.2%), were reported in the Zinder Region, southeast of Niger, from 1 November 2022 to 27 January 2023, compared to 231 cases reported from 1 November 2021 to 31 January 2022. In the current outbreak, the Neisseria meningitidis serogroup C (NmC) is responsible for the majority of laboratory confirmed cases (104/111; 93.7%). To organize the response to the outbreak, a global team of WHO and other partners, including MSF and UNICEF, has been sent to Niger. Even though there are many challenges in battle against meningitis in Niger, immunization, antibiotics administration and strong disease surveillance are recommended techniques to cope with the current meningitis outbreak in Niger.


Assuntos
Meningite Meningocócica , Neisseria meningitidis Sorogrupo C , Humanos , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Níger/epidemiologia , Surtos de Doenças , Vacinação
12.
Front Neurol ; 14: 1088182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864915

RESUMO

Background: Bacterial meningitis (BM) is a public health challenge as it is associated with high lethality and neurological sequelae. Worldwide, most cases are registered in the African Meningitis Belt (AMB). The role of particular socioepidemiological features is essential for understanding disease dynamics and optimizing policy-making. Objective: To identify socioepidemiological macro-determinants that contribute to explaining the differences in BM incidence between AMB and the rest of Africa. Methods: Country-level ecologic study based on the cumulative incidence estimates of the Global Burden of Disease study and reports of the MenAfriNet Consortium. Data about relevant socioepidemiological features were extracted from international sources. Multivariate regression models were implemented to define variables associated with the classification of African countries within the AMB and the incidence of BM worldwide. Results: Cumulative incidences at the AMB sub-regions were 111.93 (west), 87.23 (central), 65.10 (east), and 42.47 (north) per 100,000 population. A pattern of common origin with continuous exposition and seasonality of cases was observed. Socio-epidemiological determinants contributing to differentiating the AMB from the rest of Africa were household occupancy (OR 3.17 CI 95% 1.09-9.22, p = 0.034) and malaria incidence (OR 1.01 CI 95% 1.00-1.02, p = 0.016). BM cumulative incidence worldwide was additionally associated with temperature and gross national income per capita. Conclusion: Socioeconomic and climate conditions are macro-determinants associated with BM cumulative incidence. Multilevel designs are required to confirm these findings.

13.
Afr J Lab Med ; 12(1): 2086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058850

RESUMO

Background: Within the African meningitis belt, yearly outbreaks of cerebrospinal meningitis (CSM), with incidence rates of 10-100 cases per 100 000 population, are typically punctuated by explosive epidemics occurring every 8-12 years, with incidence rates that can exceed 1000 cases per 100 000 population. From 1928 to 2018, Nigeria recorded the highest number (21%) of cases in the region. The reactive vaccination strategy, a protocol with major drawbacks, has been the vaccination method utilised in Nigeria. Aim: This review highlights the need for governments within the African meningitis belt to start preparations against the next explosive CSM epidemic expected to occur between 2024 and 2028 using the preventive vaccination strategy. Methods: We performed a literature search on the Google Scholar search engine using relevant search strings and included studies and reports between 1905 and 2022 that met set criteria. Results: Neisseria meningitidis serogroups A, B, C, W135, X, and Y; Haemophilus influenzae serotypes a, b, c, e, and f; and Streptococcus pneumoniae serotypes 1, 4, 5, 6, 9, 19, 19F, and 20 were implicated as aetiologies. However, the reactive vaccination strategy was only used against N. meningitidis A or C, H. influenzae b, and pneumococcal conjugate vaccine. Between 2011 and 2017, a polysaccharide vaccine (ACW or ACYW) active against serogroups A, C, W and Y was used within the African meningitis belt for the first time. Varying genotypes of N. meningitidis, H. influenzae and S. pneumoniae were identified. Conclusion: Our results revealed a very high success rate for the preventive vaccination strategy. What this study adds: In order to ensure reductions in the morbidity and mortality associated with invasive CSM, the Federal Ministry of Health, Nigeria, should leverage existing knowledge of the circulating serogroups, serotypes, and genotypes of the primary bacterial aetiologies and commence the implementation of the preventive vaccination strategy.

14.
Clim Serv ; 28: 100326, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36504524

RESUMO

West African countries are hit annually by meningitis outbreaks which occur during the dry season and are linked to atmospheric variability. This paper describes an innovative co-production process between the African Centre of Meteorological Applications for Development (ACMAD; forecast producer) and the World Health Organisation Regional Office for Africa (WHO AFRO; forecast user) to support awareness, preparedness and response actions for meningitis outbreaks. Using sub-seasonal to seasonal (S2S) forecasts, this co-production enables ACMAD and WHO AFRO to build initiative that increases the production of useful climate services in the health sector. Temperature and relative humidity forecasts are combined with dust forecasts to operationalize a meningitis early warning system (MEWS) across the African meningitis belt with a two-week lead time. To prevent and control meningitis, the MEWS is produced from week 1 to 26 of the year. This study demonstrates that S2S forecasts have good skill at predicting dry and warm atmospheric conditions precede meningitis outbreaks. Vigilance levels objectively defined within the MEWS are consistent with reported cases of meningitis. Alongside developing a MEWS, the co-production process provided a framework for analysis of climate and environmental risks based on reanalysis data, meningitis burden, and health service assessment, to support the development of a qualitative roadmap of country prioritization for defeating meningitis by 2030 across the WHO African region. The roadmap has enabled the identification of countries most vulnerable to meningitis epidemics, and in the context of climate change, supports plans for preventing, preparing, and responding to meningitis outbreaks.

15.
Expert Rev Vaccines ; 20(6): 679-689, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33857394

RESUMO

Introduction: Besides meningococcal disease, the African meningitis belt (AMB) region is also affected by pneumococcal disease. Most AMB countries have introduced pneumococcal conjugate vaccines (PCV) following a schedule of three primary doses without a booster or a catch-up campaign. PCV is expected to help control pneumococcal disease through both direct and indirect effects. Whether and how fast this will be achieved greatly depends on implementation strategies. Pre-PCV data from the AMB indicate high carriage rates of the pneumococcus, not only in infants but also in older children, and a risk of disease and death that spans lifetime. Post-PCV data highlight the protection of vaccinated children, but pneumococcal transmission remains important, resulting in a lack of indirect protection for unvaccinated persons.Areas covered: A non-systematic literature review focused on AMB countries. Relevant search terms were used in PubMed, and selected studies before and after PCV introduction were summarized narratively to appraise the suitability of current PCV programmatic strategies.Expert opinion: The current implementation strategy of PCV in the AMB appears suboptimal regarding the generation of indirect protection. We propose and discuss alternative programmatic strategies, including the implementation of broader age group mass campaigns, to accelerate disease control in this high transmission setting.


Assuntos
Meningite , Infecções Pneumocócicas , Criança , Humanos , Lactente , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Streptococcus pneumoniae , Vacinas Conjugadas
16.
Vaccine ; 39(33): 4685-4699, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34218962

RESUMO

BACKGROUND: Ghana introduced 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant immunization program in 2012, using a three-dose primary series without a booster. Despite ≥ 88% reported three-dose vaccination coverage since 2013, PCV13-type pneumococcal meningitis outbreaks have occurred. We estimated the ongoing economic burden of PCV13-type pneumococcal meningitis and pneumonia in northern Ghana, an area within the African meningitis belt with seasonal increases of pneumococcal meningitis post-PCV13 introduction, to inform PCV13 vaccination policy. METHODS: We performed a cross-sectional survey among patients with pneumonia or meningitis at three hospitals in northern Ghana to determine patient-level costs (direct medical and nonmedical, indirect patient and caregiver costs) incurred in household, outpatient, and inpatient settings. Pneumonia burden was estimated using 2017-2018 administrative records. Pneumococcal meningitis burden was estimated using 2017-2018 case-based surveillance data. Economic burden was reported in 2019 U.S. dollars ($) from the societal perspective. RESULTS: For an area with a total population of 5,068,521, our model estimated 6,441 PCV13-type pneumonia cases and 286 PCV13-type meningitis cases occurred in a typical year post-PCV13. In the base case scenario, the total economic burden was $5,230,035 per year ($777 per case). By age group, cost per PCV13-type pneumonia case was $423 (<5 years), $911 (5-14 years), and $784 (≥15 years); cost per PCV13-type meningitis case was $2,128 (<5 years), $3,247 (5-14 years), and $2,883 (≥15 years). Most (78.0-93.4%) of the total societal cost was due to indirect costs related to deaths from PCV13-type diseases. CONCLUSIONS: The estimated economic burden of PCV13-type disease in northern Ghana remains substantial, especially in older children and adults who were expected to have benefited from indirect effects from infant immunization. Additional interventions such as changes in the infant immunization schedule, reactive vaccination, or catch-up PCV13 vaccination may be needed to control remaining vaccine-type disease.


Assuntos
Meningite Pneumocócica , Infecções Pneumocócicas , Pneumonia Pneumocócica , Pneumonia , Adulto , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Análise Custo-Benefício , Estudos Transversais , Gana/epidemiologia , Humanos , Lactente , Meningite Pneumocócica/epidemiologia , Meningite Pneumocócica/prevenção & controle , Vacinas Pneumocócicas , Vacinação , Vacinas Conjugadas
17.
Vaccine ; 38(23): 3922-3929, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32327220

RESUMO

Pneumococcal meningitis in the African meningitis belt is primarily caused by Streptococcus pneumoniae serotype 1, a serotype contained in the 13-valent pneumococcal conjugate vaccine (PCV13). In 2014, Niger introduced PCV13 with doses given at 6, 10, and 14 weeks of age. We leveraged existing meningitis surveillance data to describe pneumococcal meningitis trends in Niger. As a national reference laboratory for meningitis, Centre de Recherche Médicale et Sanitaire (CERMES) receives cerebrospinal fluid specimens from suspected bacterial meningitis cases and performs confirmatory testing for an etiology by culture or polymerase chain reaction (PCR). Specimens with S. pneumoniae detection during 2010-2018 were sent to the Centers for Disease Control and Prevention for serotyping by sequential triplex real-time PCR. Specimens that were non-typeable by real-time PCR underwent serotyping by conventional multiplex PCR. We tested differences in the distribution of pneumococcal serotypes before (2010-2012) and after (2016-2018) PCV13 introduction. During January 2010 to December 2018, CERMES received 16,155 specimens; 5,651 (35%) had bacterial etiology confirmed. S. pneumoniae accounted for 13.2% (744/5,651); 53.1% (395/744) were serotyped. During 2010-12, PCV13-associated serotypes (VT) constituted three-fourths of serotyped pneumococcus-positive specimens; this proportion declined in all age groups in 2016-18, most substantially in children aged < 5 years (74.0% to 28.1%; P < 0.05). Among persons aged ≥ 5 years, VT constituted > 50% of pneumococcal meningitis after PCV13 introduction; serotype 1 remained the most common VT among persons aged ≥ 5 years, but not among those < 5 years. VT as a group caused a smaller proportion of reported pneumococcal meningitis cases after PCV13 introduction in Niger. Serotype 1, however, remains the major cause of pneumococcal meningitis in older children and adults. Different vaccination strategies, such as changing the infant vaccination schedule or extending vaccine coverage to older children and adults, are needed, in addition to stronger surveillance.


Assuntos
Meningite Pneumocócica , Infecções Pneumocócicas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Meningite Pneumocócica/epidemiologia , Meningite Pneumocócica/prevenção & controle , Níger/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , Sorotipagem , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas
18.
Vaccine ; 37(37): 5657-5663, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371015

RESUMO

Streptococcus pneumoniae is increasingly recognised as an important cause of bacterial meningitis in the African meningitis belt. The World Health Organization sets guidelines for response to outbreaks of meningococcal meningitis, but there are no current guidelines for outbreaks where S. pneumoniae is implicated. We aimed to evaluate the impact of using a similar response to target outbreaks of vaccine-preventable pneumococcal meningitis in the meningitis belt. Here, we adapt a previous model of reactive vaccination for meningococcal outbreaks to estimate the potential impact of reactive vaccination in a recent pneumococcal meningitis outbreak in the Brong-Ahafo region of central Ghana using weekly line list data on all suspected cases over a period of five months. We determine the sensitivity and specificity of various epidemic thresholds and model the cases and deaths averted by reactive vaccination. An epidemic threshold of 10 suspected cases per 100,000 population per week performed the best, predicting large outbreaks with 100% sensitivity and more than 85% specificity. In this outbreak, reactive vaccination would have prevented a lower number of cases per individual vaccinated (approximately 15,300 doses per case averted) than previously estimated for meningococcal outbreaks. Since the burden of death and disability from pneumococcal meningitis is higher than that from meningococcal meningitis, there may still be merit in considering reactive vaccination for outbreaks of pneumococcal meningitis. More outbreak data are needed to refine our model estimates. Whatever policy is followed, we emphasize the importance of timely laboratory confirmation of suspected cases to enable appropriate decisions about outbreak response.


Assuntos
Surtos de Doenças , Meningite Pneumocócica/epidemiologia , Meningite Pneumocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Vacinação , Gana/epidemiologia , Humanos , Incidência , Meningite Pneumocócica/mortalidade , Mortalidade , Vigilância em Saúde Pública , Streptococcus pneumoniae/imunologia
19.
Hum Vaccin Immunother ; 14(5): 1107-1115, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211624

RESUMO

Africa historically has had the highest incidence of meningococcal disease with high endemic rates and periodic epidemics. The meningitis belt, a region of sub-Saharan Africa extending from Senegal to Ethiopia, has experienced large, devastating epidemics. However, dramatic shifts in the epidemiology of meningococcal disease have occurred recently. For instance, meningococcal capsular group A (NmA) epidemics in the meningitis belt have essentially been eliminated by use of conjugate vaccine. However, NmW epidemics have emerged and spread across the continent since 2000; NmX epidemics have occurred sporadically, and NmC recently emerged in Nigeria and Niger. Outside the meningitis belt, NmB predominates in North Africa, while NmW followed by NmB predominate in South Africa. Improved surveillance is necessary to address the challenges of this changing epidemiologic picture. A low-cost, multivalent conjugate vaccine covering NmA and the emergent and prevalent meningococcal capsular groups C, W, and X in the meningitis belt is a pressing need.


Assuntos
Epidemias/prevenção & controle , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/uso terapêutico , Neisseria meningitidis/imunologia , África Subsaariana/epidemiologia , Custos de Medicamentos , Monitoramento Epidemiológico , Humanos , Programas de Imunização/economia , Programas de Imunização/métodos , Programas de Imunização/organização & administração , Programas de Imunização/tendências , Incidência , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/economia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/genética , Sorogrupo , Vacinação/economia , Vacinação/métodos , Vacinação/tendências , Vacinas Conjugadas/economia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico
20.
Wellcome Open Res ; 3: 134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31069258

RESUMO

A high incidence of bacterial meningitis was observed in the Central African Republic (CAR) from December 2015 to May 2017 in three hospitals in the northwest of the country that are within the African meningitis belt. The majority of cases were caused by Streptococcus pneumoniae (249/328; 75.9%), which occurred disproportionately during the dry season (November-April) with a high case-fatality ratio of 41.6% (95% confidence interval [CI] 33.0, 50.8%). High rates of bacterial meningitis during the dry season in the meningitis belt are typically caused by Neisseria meningitidis (meningococcal meningitis), and our observations suggest that the risk of contracting S. pneumoniae (pneumococcal) meningitis is increased by the same environmental factors. Cases of meningococcal meningitis (67/328; 20.4%) observed over the same period were predominantly type W and had a lower case fatality rate of 9.6% (95% CI 3.6, 21.8%). Due to conflict and difficulties in accessing medical facilities, it is likely that the reported cases represented only a small proportion of the overall burden and that there is high underlying prevalence of S. pneumoniae carriage in the community. Nationwide vaccination campaigns in the CAR against meningitis have been limited to the use of MenAfriVac, which targets only meningococcal meningitis type A. We therefore highlight the need for expanded vaccine coverage to prevent additional causes of seasonal outbreaks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa