Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.956
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031742

RESUMO

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , Virulência
2.
Plant Cell ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373565

RESUMO

Brassinosteroid (BR) signaling and the C-class MADS-box gene AGAMOUS (AG) play important roles in ovule development in Arabidopsis (Arabidopsis thaliana). However, how BR signaling integrates with AG functions to control the female reproductive process remains elusive. Here, we showed that the regulatory role of BR signaling in proper ovule development is mediated by the transcriptional repressor gene ZINC FINGER PROTEIN 11 (ZFP11), which is a direct target of AG. ZFP11 expression initiates from the placenta upon AG induction and becomes prominent in the funiculus of ovule primordia. Plants harboring zfp11 mutations showed reduced placental length with decreased ovule numbers and some aborted ovules. During ovule development, the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1), which functions downstream of BR signaling, inhibits ZFP11 expression in the chalaza and nucellus. Weakened BR signaling leads to stunted integuments in ovules, resulting from the direct repression of INNER NO OUTER (INO) and WUSCHEL (WUS) by extended ZFP11 expression in the chalaza and nucellus, respectively. In addition, the zfp11 mutant shows reduced sensitivity to BR biosynthesis inhibitors and can rescue outer integument defects in brassinosteroid insensitive 1 (bri1) mutants. Thus, the precise spatial regulation of ZFP11, which is activated by AG in the placenta and suppressed by BR signaling in the central and distal regions of ovules, is essential for ensuring sufficient ovule numbers and proper ovule formation.

3.
Annu Rev Pharmacol Toxicol ; 63: 1-13, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35850522

RESUMO

After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ9-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.


Assuntos
Canabinoides , Humanos , Criança , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Dronabinol/farmacologia
4.
Proc Natl Acad Sci U S A ; 120(46): e2314225120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931111

RESUMO

Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Íntrons , Mutação , Genoma
5.
Proc Natl Acad Sci U S A ; 120(22): e2221181120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216511

RESUMO

Organ initiation from the shoot apical meristem first gives rise to leaves during vegetative development and then flowers during reproductive development. LEAFY (LFY) is activated after floral induction and together with other factors promotes the floral program. LFY functions redundantly with APETALA1 (AP1) to activate the class B genes APETALA3 (AP3) and PISTILLATA (PI), the class C gene AGAMOUS (AG), and the class E gene SEPALLATA3, which leads to the specification of stamens and carpels, the reproductive organs of flowers. Molecular and genetic networks that control the activation of AP3, PI, and AG in flowers have been well studied; however, much less is known about how these genes are repressed in leaves and how their repression is lifted in flowers. Here, we showed that two genes encoding Arabidopsis C2H2 ZINC FINGER PROTEIN (ZFP) transcription factors, ZP1 and ZFP8, act redundantly to directly repress AP3, PI, and AG in leaves. After LFY and AP1 are activated in floral meristems, they down-regulate ZP1 and ZFP8 directly to lift the repression on AP3, PI, and AG. Our results reveal a mechanism for how floral homeotic genes are repressed and derepressed before and after floral induction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Domínio MADS , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Folhas de Planta/metabolismo , Dedos de Zinco
6.
Proc Natl Acad Sci U S A ; 120(44): e2307320120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871220

RESUMO

The selective photocatalytic conversion of CO2 and H2O to high value-added C2H4 remains a great challenge, mainly attributed to the difficulties in C-C coupling of reaction intermediates and desorption of C2H4* intermediates from the catalyst surface. These two key issues can be simultaneously overcome by alloying Ag with Cu which gives enhanced activity to both reactions. Herein, we developed a facile stepwise photodeposition strategy to load Cu-Ag alloy sub-nanoclusters (ASNCs) on TiO2 for CO2 photoreduction to produce C2H4. The optimized catalyst exhibits a record-high C2H4 formation rate (1110.6 ± 82.5 µmol g-1 h-1) with selectivity of 49.1 ± 1.9%, which is an order-of-magnitude enhancement relative to current work for C2H4 photosynthesis. The in situ FT-IR spectra combined with DFT calculations reveal the synergistic effect of Cu and Ag in Cu-Ag ASNCs, which enable an excellent C-C coupling capability like Ag and promoted C2H4* desorption property like Cu, thus advancing the selective and efficient production of C2H4. The present work provides a deeper understanding on cluster chemistry and C-C coupling mechanism for CO2 reduction on ASNCs and develops a feasible strategy for photoreduction CO2 to C2 fuels or industrial feedstocks.

7.
J Biol Chem ; 300(6): 107338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705391

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Especificidade da Espécie , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Bovinos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Suínos , Macaca , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
8.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865203

RESUMO

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Assuntos
Glicina Hidroximetiltransferase , Síndrome MELAS , Serina , Humanos , Síndrome MELAS/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/patologia , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , Serina/metabolismo , Mioblastos/metabolismo , NAD/metabolismo , Masculino , Proteômica/métodos , Feminino , Transcriptoma , Multiômica
9.
Rev Med Virol ; 34(4): e2569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986606

RESUMO

We aimed to assess the performance of Ag-RDT and RT-qPCR with regard to detecting infectious SARS-CoV-2 in cell cultures, as their diagnostic test accuracy (DTA) compared to virus isolation remains largely unknown. We searched three databases up to 15 December 2021 for DTA studies. The bivariate model was used to synthesise the estimates. Risk of bias was assessed using QUADAS-2/C. Twenty studies (2605 respiratory samples) using cell culture and at least one molecular test were identified. All studies were at high or unclear risk of bias in at least one domain. Three comparative DTA studies reported results on Ag-RDT and RT-qPCR against cell culture. Two studies evaluated RT-qPCR against cell culture only. Fifteen studies evaluated Ag-RDT against cell culture as reference standard in RT-qPCR-positive samples. For Ag-RDT, summary sensitivity was 93% (95% CI 78; 98%) and specificity 87% (95% CI 70; 95%). For RT-qPCR, summary sensitivity (continuity-corrected) was 98% (95% CI 95; 99%) and specificity 45% (95% CI 28; 63%). In studies relying on RT-qPCR-positive subsamples (n = 15), the summary sensitivity of Ag-RDT was 93% (95% CI 92; 93%) and specificity 63% (95% CI 63; 63%). Ag-RDT show moderately high sensitivity, detecting most but not all samples demonstrated to be infectious based on virus isolation. Although RT-qPCR exhibits high sensitivity across studies, its low specificity to indicate infectivity raises the question of its general superiority in all clinical settings. Study findings should be interpreted with caution due to the risk of bias, heterogeneity and the imperfect reference standard for infectivity.


Assuntos
COVID-19 , SARS-CoV-2 , Sensibilidade e Especificidade , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , COVID-19/diagnóstico , COVID-19/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Técnicas de Cultura de Células/métodos , Teste para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/métodos , Testes de Diagnóstico Rápido
10.
Nano Lett ; 24(14): 4072-4081, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557078

RESUMO

Given the binary nature of nanoalloy systems, their properties are dependent on their size, shape, structure, composition, and chemical ordering. When energy and entropic factors for shapes and structure variations are considered in nanoparticle growth, the spectra of shapes become so vast that even metastable arrangements have been reported under ambient conditions. Experimental and theoretical variations of multiply twinned particles have been observed, from the Ino and Marks decahedra to polyicosahedra and polydecahedra with comparable energetic stability among them. Herein, we report the experimental production of a stable doubly truncated double-icosahedron structure (TdIh) in Au-Ag nanoparticles, in which a twinned Ag-rich alloyed shell is reconstructed on a Au-Ag alloyed Ino-decahedral core. The structure, chemical composition, and growth pathway are proposed on the basis of high-angle annular dark-field scanning transmission electron microscopy analysis and excess energy calculations, while its structural stability is estimated by large-scale atomic molecular dynamics simulations. This novel nanostructure differs from other structures previously reported.

11.
Nano Lett ; 24(15): 4562-4570, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591327

RESUMO

Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.


Assuntos
Glioma , Nanopartículas Metálicas , Humanos , Bismuto , Rádio (Anatomia) , Nanopartículas Metálicas/química , Crânio , Glioma/diagnóstico por imagem
12.
Nano Lett ; 24(12): 3793-3800, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484388

RESUMO

Plasmonic superstructures hold great potential in encrypted information chips but are still unsatisfactory in terms of resolution and maneuverability because of the limited fabrication strategies. Here, we develop an antielectric potential method in which the interfacial energy from the modification of 5-amino-2-mercapto benzimidazole (AMBI) ligand is used to overcome the electric resistance between the Au nanospheres (NSs) and substrate, thereby realizing the in situ growth of a Au-Ag heterodimers array in large scale. The morphology, number, and size of Ag domains on Au units can be controlled well by modulating the reaction kinetics and thermodynamics. Experiments and theoretical simulations reveal that patterned 3D Au-2D Ag and 3D Au-3D Ag dimer arrays with line widths of 400 nm exhibit cerulean and cyan colors, respectively, and achieve fine color modulation and ultrahigh information resolution. This work not only develops a facile strategy for fabricating patterned plasmonic superstructures but also pushes the plasmon-based high-resolution encrypted information chip into more complex applications.

13.
Nano Lett ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324748

RESUMO

Gold ultrathin nanorods (Au UNRs) are anisotropic nanostructures constructed by attaching gold nanoclusters in one dimension. Au UNRs exhibit localized surface plasmon resonance (LSPR) only in the longitudinal direction because their diameter is smaller than the Fermi wavelength of an electron (<2 nm). In this study, we found that the LSPR wavelength of oleylamine-stabilized Au UNRs is blue-shifted simply by mixing with Ag(I). High-resolution elemental mapping and X-ray photoelectron spectroscopy of the resulting UNRs indicate that a Ag monatomic layer is formed on the Au UNR surface by the antigalvanic reduction of Ag(I). This process allowed us to synthesize a series of Au@Ag core-shell UNRs with LSPR wavelengths in the range of 1.2-2.0 µm.

14.
Nano Lett ; 24(31): 9683-9690, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052088

RESUMO

I-III-VI type semiconductor nanocrystals (NCs) have attracted considerable attention due to their environmental friendly nature and large-scale tunable emission. Herein, we report the successful synthesis of full-spectrum (470 to 614 nm) Ag-In-Ga-Zn-S (AIGZS) NCs by precisely regulating the In/Ga ratios using a facile one-pot method. Intriguingly, the photoluminescence (PL) peak width exhibits a continuous narrowing trend with extended reaction time, ultimately reaching a full width at half-maximum (fwhm) of 34 nm for green AIGZS NCs. Furthermore, the exciton relaxation dynamics of AIGZS NCs were systematically investigated using time-resolved photoluminescence and femtosecond transient absorption spectroscopy. Remarkably, we successfully fabricated blue, green, and red quantum-dot light-emitting diodes (QLEDs), forecasting the potential of AIGZS NCs with high color purity for applications in full-spectrum QLEDs.

15.
J Infect Dis ; 230(2): 363-373, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531685

RESUMO

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5757 participants reported 17 572 Ag-RDT results and completed 12 674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR positive. Overall sensitivity and specificity were 53.0% (95% confidence interval [CI], 49.6%-56.4%) and 98.8% (95% CI, 98.5%-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4-7 days after symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSIONS: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high risk for SARS-CoV-2 infection.


Assuntos
Teste Sorológico para COVID-19 , COVID-19 , SARS-CoV-2 , Sensibilidade e Especificidade , Humanos , COVID-19/diagnóstico , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Estudos Prospectivos , Estudos Longitudinais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Teste Sorológico para COVID-19/métodos , Antígenos Virais/análise , Teste de Ácido Nucleico para COVID-19/métodos , Idoso , Washington , Adulto Jovem , Adolescente
16.
Diabetologia ; 67(1): 27-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37782353

RESUMO

AIMS/HYPOTHESIS: We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS: Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS: Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION: Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Adolescente , Humanos , Interleucina-10 , Peptídeo C , Linfócitos T CD8-Positivos/metabolismo , Proinsulina , Método Duplo-Cego
17.
Plant J ; 116(2): 478-496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478313

RESUMO

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.

18.
Curr Issues Mol Biol ; 46(3): 2468-2479, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534772

RESUMO

Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.

19.
Trends Genet ; 37(8): 745-757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33745750

RESUMO

Bacterial resistance to antibiotics has reached critical levels, skyrocketing in hospitals and the environment and posing a major threat to global public health. The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is essential to safeguard the clinical efficacy of existing drugs. In this review, we examine the potential application of novel CRISPR-based genetic approaches to reducing AR in both environmental and clinical settings and prolonging the utility of vital antibiotics.


Assuntos
Antibacterianos/uso terapêutico , Sistemas CRISPR-Cas/genética , Resistência Microbiana a Medicamentos/genética , Genoma Bacteriano/genética , Antibacterianos/efeitos adversos , Edição de Genes/métodos , Genoma Bacteriano/efeitos dos fármacos , Humanos
20.
Biochem Biophys Res Commun ; 721: 150146, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781660

RESUMO

To enable an efficient bacterial cell surface display with effective protein expression and cell surface loading ability via autotransporter for potential vaccine development applications, the inner membrane protein translocation efficiency was investigated via a trial-and-error strategy by replacing the original unusual long signal peptide of E. coli Ag43 with 11 different signal peptides. The receptor-binding domain (RBD) of coronavirus was used as a neutral display substrate to optimize the expression conditions, and the results showed that signal peptides from PelB, OmpC, OmpF, and PhoA protein enhance the bacterial cell surface display efficiency of RBD. In addition, the temperature has also a significant effect on the autodisplay efficiency of RBD. Our data provide further technical basis for the biotechnological application of Ag43 as a bacterial surface display carrier system and further potential application in vaccine development.


Assuntos
Escherichia coli , Domínios Proteicos , Sinais Direcionadores de Proteínas , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Técnicas de Visualização da Superfície Celular , Ligação Proteica , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa