Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2319436121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386712

RESUMO

Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.


Assuntos
Silicatos , Oligoelementos , Zea mays , Agricultura , Solo , Dióxido de Carbono , Glycine max
2.
Proc Natl Acad Sci U S A ; 120(42): e2220371120, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812710

RESUMO

Current large-scale patterns of land use reflect history, local traditions, and production costs, much more so than they reflect biophysical potential or global supply and demand for food and freshwater, or-more recently-climate change mitigation. We quantified alternative land-use allocations that consider trade-offs for these demands by combining a dynamic vegetation model and an optimization algorithm to determine Pareto-optimal land-use allocations under changing climate conditions in 2090-2099 and alternatively in 2033-2042. These form the outer bounds of the option space for global land-use transformation. Results show a potential to increase all three indicators (+83% in crop production, +8% in available runoff, and +3% in carbon storage globally) compared to the current land-use configuration, with clear land-use priority areas: Tropical and boreal forests were preserved, crops were produced in temperate regions, and pastures were preferentially allocated in semiarid grasslands and savannas. Transformations toward optimal land-use patterns would imply extensive reconfigurations and changes in land management, but the required annual land-use changes were nevertheless of similar magnitude as those suggested by established land-use change scenarios. The optimization results clearly show that large benefits could be achieved when land use is reconsidered under a "global supply" perspective with a regional focus that differs across the world's regions in order to achieve the supply of key ecosystem services under the emerging global pressures.

3.
Environ Res ; 251(Pt 2): 118717, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518910

RESUMO

Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.


Assuntos
Archaea , Bactérias , Resistência Microbiana a Medicamentos , Oryza , Microbiologia do Solo , Archaea/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Animais , Agricultura/métodos , Vírus/genética , Ecossistema , Peixes
4.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612595

RESUMO

Integrated rice-fish farming has emerged as a novel agricultural production pattern to address global food security challenges. Aiming to determine the optimal, scientifically sound, and sustainable stocking density of red claw crayfish (Cherax quadricarinatus) in an integrated rice-crayfish farming system, we employed Illumina high-throughput 16S rRNA gene sequencing to evaluate the impact of different stocking densities of red claw crayfish on the composition, diversity, function, and co-occurrence network patterns of soil bacterial communities. The high stocking density of red claw crayfish reduced the diversity and evenness of the soil bacterial community during the mid-culture stage. Proteobacteria, Actinobacteria, and Chloroflexi emerged as the most prevalent phyla throughout the experimental period. Low stocking densities initially boosted the relative abundance of Actinobacteria in the paddy soil, while high densities did so during the middle and final stages. There were 90 distinct functional groups identified across all the paddy soil samples, with chemoheterotrophy and aerobic chemoheterotrophy being the most abundant. Low stocking densities initially favored these functional groups, whereas high densities enhanced their relative abundances in the later stages of cultivation. Medium stocking density of red claw crayfish led to a more complex bacterial community during the mid- and final culture stages. The experimental period showed significant correlations with soil bacterial communities, with total nitrogen (TN) and total phosphorus (TP) concentrations emerging as primary factors contributing to the alterations in soil bacterial communities. In summary, our findings demonstrated that integrated rice-crayfish farming significantly impacted the soil microbiomes and environmental factors at varying stocking densities. Our study contributed to theoretical insights into the profound impact of integrated rice-crayfish farming with various stocking densities on bacterial communities in paddy soils.


Assuntos
Actinobacteria , Microbiota , Oryza , Animais , Solo , Astacoidea , RNA Ribossômico 16S/genética , Agricultura , Actinobacteria/genética
5.
J Environ Manage ; 347: 119064, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748292

RESUMO

:Land management strategies often prioritize agricultural supply services at the expense of other ecosystem services. To achieve a high and steady supply of multiple ecosystem services, it is essential to optimize land management practices in areas suitable for agriculture. However, many studies on land management tend to focus on their benefits to ecosystem service delivery without adequately considering the potential risks to other services that might be involved. Here we use modern portfolio theory to quantitatively measure benefits and risks from land management strategies to enhance ecosystem services. We create seven land management scenarios that balance different kinds of ecosystem services in different ways in the agricultural production area of Maoming, Guangdong Province, China. The method yielded optimal portfolios of land management patterns that enhanced ecosystem services while reducing risk as much as possible. This includes a scenario delivering a 22% increase in agricultural production service, while simultaneously increasing the provision of nature-related ecosystem services by 2%. However, no optimization scenario was perfect, and there was always a trade-off between gaining certain ecosystem service benefits and creating a risk of losing others. Our portfolio theory approach reveals that it is essential to consider both the benefits and risks of land management strategies.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Agricultura , China
6.
J Environ Manage ; 347: 119023, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816279

RESUMO

Nitrogen (N) budgets are valuable tools to increase the understanding of causalities between agricultural production and N emissions to support agri-environmental policy instruments. However, regional agricultural N budgets for an entire country covering all major N flows across sectors and environmental compartments, which also distinguish between different N forms, are largely lacking. This study comprehensively analyses regional differences in N budgets pertainting to agricultural production and consumption in the largely alpine and spatially heterogeneous country of Austria. A special focus is on the interconnections between regional agricultural production systems, N emissions, nitrogen use efficiencies (NUE), and natural boundary conditions. Seven regional and one national balance are undertaken via material flow analysis and are analysed with regards to losses into soils, water bodies and atmosphere. Further, NUE is calculated for two conceptual systems of plant and plant-livestock production. The results reveal major differences among regions, with significant implications for agri-environmental management. The high-alpine region, characterized by alpine pastures with a low livestock density, shows consequent low N inputs, the lowest area-specific N outputs and the most inefficient NUE. In contrast, the highest NUE is achieved in a lowland region specialized in arable farming with a low livestock density and a predominance of mineral fertilizer over manure application. In this region, the N surplus is almost as low as in the high-alpine region due to both significantly higher N inputs and outputs compared to the high-alpine region. Nevertheless, due to low precipitation levels, widespread exceedances of the nitrate target level concentration take place in the groundwater. The same issue arises in another non-alpine region characterized by arable farming and high livestock densities. Here, the highest N inputs, primarily via manure, result in the highest N surplus and related nitrate groundwater exceedances despite an acceptable NUE. These examples show that NUE alone is an insufficient target and that adapted criteria are needed for different regions to consider natural constraints and specific framework conditions. In a geographically heterogeneous country like Austria, the regional circumstances strongly define and limit the scope and the potential effectiveness of agricultural N management strategies. These aspects should be integrated into the design, assessment and implementation of agri-environmental programmes.


Assuntos
Nitratos , Nitrogênio , Animais , Áustria , Nitrogênio/análise , Nitratos/análise , Esterco/análise , Agricultura/métodos , Gado , Fertilizantes/análise
7.
Reg Environ Change ; 23(2): 52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968261

RESUMO

The dependence on imports of the Middle East and North Africa (MENA) region for its food needs has increased steadily since the early 1960s, from 10% to about 40%. This import dependence could continue to rise in coming decades due to the projected MENA population growth and the expected negative impacts of climate change on the region's natural resources and agricultural performances. To what extent the food import dependency of the MENA region will continue to increase up to 2050 and how the region could mitigate its rising reliance on food imports is both a key question for the region itself and a crucial geopolitical issue for the world as a whole. In this paper, we use a biomass balance model to assess the level of the food import dependency of the MENA region in 2050 resulting from six scenarios. We show that under current trends and severe impacts of climate change the food import dependency of the MENA would continue to rise and reach 50% in 2050. Maghreb would be particularly affected becoming dependent on imports for almost 70% of its food needs. Adopting a Mediterranean diet, reaching faster productivity growth in agriculture or reducing waste and loss along the food chain would contribute to decelerate the rise of the MENA's food import dependency. However, only the combination of these three options could significantly offset the increased import dependency in the most affected sub-regions: Maghreb, the Middle and the Near East. In all scenarios, Turkey strengthens its position as a net exporter of agricultural products. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-023-02045-y.

8.
Entropy (Basel) ; 25(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372302

RESUMO

Crop insurance is used to reduce risk in agriculture. This research is focused on selecting an insurance company that provides the best policy conditions for crop insurance. A total of five insurance companies that provide crop insurance services in the Republic of Serbia were selected. To choose the insurance company that provides the best policy conditions for farmers, expert opinions were solicited. In addition, fuzzy methods were used to assess the weights of the various criteria and to evaluate insurance companies. The weight of each criterion was determined using a combined approach based on fuzzy LMAW (the logarithm methodology of additive weights) and entropy methods. Fuzzy LMAW was used to determine the weights subjectively through expert ratings, while fuzzy entropy was used to determine the weights objectively. The results of these methods showed that the price criterion received the highest weight. The selection of the insurance company was made using the fuzzy CRADIS (compromise ranking of alternatives, from distance to ideal solution) method. The results of this method showed that the insurance company DDOR offers the best conditions for crop insurance for farmers. These results were confirmed by a validation of the results and sensitivity analysis. Based on all of this, it was shown that fuzzy methods can be used in the selection of insurance companies.

9.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499532

RESUMO

To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.


Assuntos
Germinação , Sementes , Sementes/fisiologia , Plântula/fisiologia , Produção Agrícola/métodos , Radiação Ionizante , Estresse Fisiológico
10.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628524

RESUMO

2-Amino-3-methylhexanoic acid (AMHA) was synthetized as a non-natural amino acid more than 70 years ago; however, its possible function as an inducer of plant resistance has not been reported. Plant resistance inducers, also known as plant elicitors, are becoming a novel and important development direction in crop protection and pest management. We found that free AMHA accumulated in the mycelia but not in fermentation broths of four fungal species, Magnaporthe oryzae and three Alternaria spp. We unequivocally confirmed that AMHA is a naturally occurring endogenous (2S, 3S)-α-amino acid, based on isolation, purification and structural analyses. Further experiments demonstrated that AMHA has potent activity-enhancing resistance against extreme temperature stresses in several plant species. It is also highly active against fungal, bacterial and viral diseases by inducing plant resistance. AMHA pretreatment strongly protected wheat against powdery mildew, Arabidopsis against Pseudomonas syringae DC3000 and tobacco against Tomato spotted wilt virus. AMHA exhibits a great potential to become a unique natural elicitor protecting plants against biotic and abiotic stresses.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Norleucina/análogos & derivados , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Temperatura
11.
J Environ Manage ; 321: 115917, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988400

RESUMO

In this paper, we argue that current definitions of drought, especially in the context of small-scale agricultural production, are incomplete. We introduce the concept of 'technological drought' to account for crop failures, reduced yields or water scarcity, which are the consequence of an inability to supplement water when there is a lack of irrigation technology and/or existing poor water management. We illustrate the diversity of causes of technological drought, which can include shortages of fuel or electricity to operate pumps, problematically high costs to access irrigation infrastructure, or constrained access to pumps that have to be shared among multiple farmers. We argue that vulnerability to technological drought can be strongly conditioned by socio-economic conditions and that its impact can be magnified when population growth and the demand for food mean that any decline in yield can have serious consequences for food security. We show that technological drought is a complex phenomenon, and can be differentiated from the more widely-recognised classes of drought (meteorological, agricultural, hydrological, and socio-economic) in multiple ways. In particular, technological drought exhibits an important dependence on the socio-economic context of agricultural production. It is perhaps most evident in developing economies, especially where agricultural output depends strongly on the capacity of individual farmers to manage crop water supply on small holdings. Technological drought can follow from even brief interruptions to monsoon rainfall during critical stages of crop growth, such that technological droughts can be distinguished from other forms of drought by their brevity.


Assuntos
Secas , Insegurança Hídrica , Agricultura , Tecnologia , Água , Abastecimento de Água
12.
J Environ Manage ; 305: 114391, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991029

RESUMO

Since the 1950's, global fertilizer usage has increased by more than 800% resulting in detrimental impacts to the environment. The projected increase in crop production due to increasing demands for food, feed, biofuel, and other uses, may further increase fertilizer usage. Studies have examined achieving agricultural intensification in environmentally sustainable ways, however, they have not focused on the whole-system economic aspects of changes in fertilizer usage over the long term. We utilize the Global Change Analysis Model (GCAM) to explore the impact of reducing global fertilizer usage on land use change, agricultural commodity price and production, energy production, and greenhouse gas emissions. We find that constrained fertilizer availability results in reduced global cropland area, particularly land used for bioenergy production, and expanded forested area. These results are driven by price impacts which lead to shifts in agricultural production between commodity types, regions, and technologies, and which lead to decreased agricultural commodity demands.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Agricultura , Biocombustíveis , Fertilizantes/análise , Florestas
13.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805113

RESUMO

According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Engenharia Genética/métodos , Animais , Archaea/metabolismo , Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas/genética , Engenharia Genética/história , Genoma , História do Século XX , História do Século XXI , Humanos , Gado
14.
J Environ Manage ; 287: 112288, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711667

RESUMO

Territorial Life Cycle Assessment (TLCA) appears a promising method to support informed decision making of local actors in territorial agricultural production systems (TAPS), by assessing environmental impacts of agricultural activities and potential strategies. The objectives of this study were to i) adapt TLCA methodology to integrated environmental assessment of TAPS and ii) evaluate TLCA's contribution to supporting informed decision making by assessing scenarios of change in TAPS. A TLCA of the agricultural sector was performed for a territory in the Aube department in France, including main crops and animal production types from raw material extraction to the first stage of processing. Exchanges of agricultural products and by-products among agricultural subsectors were considered by allocating impacts, which prevented double-counting them. Two contrasting scenarios were assessed with TLCA - development of on-farm biogas production and reintroduction of sheep grazing - and compared to the current situation. Results were expressed per unit area (ha), per unit biomass produced (kg) and per percentage contribution to total impacts of the territory before and after processing (at and beyond the farm gate, respectively). The main contributors (cereal and oilseed crops) did not have the highest impact at the farm scale (per ha and per kg), which highlights that contribution to total impacts of the territory is a relevant addition to the impacts per functional unit. Consideration of exchanges showed that TLCA can be used to assess effects of material interactions (biomass flows) between sectors. Scenario results showed no significant differences in impacts, except for higher water resource depletion for the biogas scenario, because most differences between scenarios were smaller than uncertainties in the input data. Other challenges were identified, such as the need to evaluate consequences of changes beyond the territory gate when performing TLCA of scenarios or the utility of characterizing the network of biomass flows in more detail. In conclusion, the methodological framework that was developed successfully identified environmental hotspots and reflected environmental impacts of material interactions between actors. Finally, it can estimate environmental impacts of future strategies, as long as uncertainty is reduced; thus, it shows potential as a decision-support tool.


Assuntos
Agricultura , Meio Ambiente , Animais , Tomada de Decisões , França , Ovinos , Recursos Hídricos
15.
J Environ Manage ; 292: 112790, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34058543

RESUMO

The increasing frequency and severity of drought pose significant threats to sustainable agricultural production across the world. Managing drought risks is challenging given the complexity of the interdependencies and feedback between climate drivers and socio-economic and ecological systems. To better understand the dynamics that drive the impacts of drought and water scarcity on crop production, a system dynamics model has been developed to explore complex interactions between factors in associated with drought and agricultural production, and examine how these might impact agricultural sustainability, using a case study in a coffee production system in Viet Nam. The model shows that water- and land-use drivers and their interactions with ecological and socio-economic factors play a more significant role than drought in determining the sustainability of coffee production. Results of policy scenario analyses indicate that drought conditions might exacerbate problems related to water shortages for irrigation but their impacts could be substantially minimized through applying intervention strategies, including restriction of the total area of land available for coffee production (to ~ 190,000 ha) and a 25% reduction in the irrigation amount per hectare of coffee compared to the common practices. Overall, the model findings add significant insight into drought and water resources management for sustainable crop production and the developed model can serve as a decision-support tool to inform strategic policy-making.


Assuntos
Clima , Produção Agrícola , Agricultura , Mudança Climática , Vietnã
16.
J Environ Manage ; 285: 112054, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556701

RESUMO

Cropland protection strategies have provided a strong contribution to limit cropland transformation worldwide. However, it negatively affects ecological land (e.g., forest, grassland, and wetland). Identifying a win-win approach for cropland protection and ecological conservation is important. Land use optimization plays a vital role in solving conflicts among land uses. Thus, in this research, taking China (mainland) as the study area, we optimized the spatial distribution of urban land and cropland to balance the requirement of cropland protection strategies and their negative effects on ecological land according to the spatial heterogeneity of land agricultural production capacity by using the LAND System Cellular Automata model for Potential Effects (LANDSCAPE). Specifically, we developed three optimization scenarios from compensational, occupancy, and occupancy and compensational sectors. We also developed one non-optimization scenario to remain comparable. Results show that compared with the non-optimization scenario, the reduced loss of ecological land in compensational, occupancy, and occupancy and compensational optimization scenario is 7180, 247, and 7277 km2, respectively. Our research indicates that we should prioritize the quality of compensated cropland when developing cropland protection strategies and planning, considering the low efficiency of the occupancy optimization and the cost of policymaking and implementing.


Assuntos
Conservação dos Recursos Naturais , Florestas , Agricultura , China , Produtos Agrícolas , Ecossistema
17.
J Environ Manage ; 285: 112096, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582473

RESUMO

With continuous population growth and acceleration of urbanization in China, environmental problems in drinking-water source areas have become increasingly prominent. In some places, domestic wastewater and aquaculture sewage are directly discharged into water bodies without any treatment. Also, large amounts of domestic garbage and aquaculture waste are often randomly stacked, seriously polluting the surrounding groundwater and surface water and deteriorating the water quality. Notably, some agricultural production activities can also cause non-point source pollution, resulting from eutrophication of water bodies. In some instances, these activities can lead to nitrogen losses of 0.7%-83.9% and phosphorus losses of 0.6%-82.8%. In view of this situation, the implementation of cleaner agricultural production is of great significance for protecting the environment in drinking-water source areas and maintaining drinking-water safety. Specific practicable measures include formula fertilization through soil testing, integrated pest management, and water-saving irrigation technology. For the livestock- and poultry-breeding industry, it is necessary for large-scale farms to construct excreta discharge treatment facilities, carry out harmless treatment and resource utilization of organic wastes, establish rural biogas septic tanks, and make use of domestic-sewage and livestock-breeding wastewaters. Also, fixed garbage-dumping sites should be built in rural water-source areas, and a unified garbage-disposal station set up to reduce the pollution discharge of domestic garbage. Moreover, it is crucial to strictly control the development and utilization of hillsides in the middle and upper reaches of the drinking-water source area, as well as strengthen the restoration of vegetation and the construction of soil and water conservation forests in these areas.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , Agricultura , China , Monitoramento Ambiental , Nitrogênio/análise , Poluição Difusa/análise , Fósforo/análise , Poluentes Químicos da Água/análise
18.
Environ Res ; 183: 109015, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32303126

RESUMO

South Africa has always been subject to an arid climate, receiving only slightly more than half of the world's average precipitation. This precarious situation is further exacerbated by very high potential evapotranspiration and an extremely rapid population growth. This paper aims to evaluate the threats to the soil and water resources of South Africa. These resources are vital in ensuring sustainable food production. Physically, wind and water erosion, structural decay, subsoil compaction and soil surface crusting are of great concern. Chemically, acidification, salinization, and pollution are the main concerns; with acidification mainly limited to the humid eastern parts and salinization to the arid western parts of South Africa. Biological degradation is mainly driven by organic matter decline, reducing the already low soil organic carbon content of South African soils. The extent of organism decline and the concomitant pathogen increase is not that well-known. Water resources in South Africa are very limited and of variable certainty. Water use efficiency, especially in agriculture and forestry, should receive urgent attention, since these are the main consumers of this valuable resource. Sedimentation, salinization, and pollution constitute the main impacts on water quality. Water pollution arises mainly from point sources such as municipal effluent, with smaller impacts from industry and feedlots. Given the varied nature of institutions and role-players involved in soil and water degradation, it is vital that one or more national institutions take responsibility to monitor and at least attempt to rectify and/or manage the degradation of South Africa's soil and water resources. In this regard substantial financial support from the private sector would also be imperative.


Assuntos
Conservação dos Recursos Naturais , Solo , Recursos Hídricos , Agricultura , Carbono , Países em Desenvolvimento , África do Sul
19.
J Plant Res ; 133(6): 751-763, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33033876

RESUMO

The YABBY family is a class of plant-specific transcription factors comprising a typical N-terminal C2C2-type zinc finger domain and a C-terminal helix-loop-helix YABBY domain. YABBY transcription factors play important roles in multiple biological processes, including polarity establishment in plant leaves, the formation and development of reproductive organs, the response to plant hormone signals, resistance to stress, crop breeding and agricultural production. The aim of this review is to summarize our current understanding of the roles, functions and value of the YABBY family in plants, with particular emphasis on new insights into the molecular and physiological mechanisms involved in the YABBY-mediated modulation of polarity establishment, morphogenesis and development, and phytohormone and stress responses in plants. In addition, we propose that this transcription factor family presents great value and potential for research, application and development in crop breeding and agricultural production in the future.


Assuntos
Morfogênese , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
BMC Public Health ; 20(1): 1383, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912223

RESUMO

BACKGROUND: Very little has been researched about the efficacy, effectiveness, feasibility, sustainability and impact of food-based approaches on the diets and nutritional status of populations at risk of hunger and food insecurity. This study contributes knowledge about the impact of food-based approaches on the diets of populations at risk of hunger and food insecurity in four of the poorest rural communities in South Africa. The study investigated the consumption and production patterns of rural households (278 in summer and 280 in winter) in four sites in the poorest municipalities in South Africa. METHODS: A multistage stratified random sampling technique was applied to identify the communities and sample households for the quantitative survey and qualitative assessments. Qualitative and quantitative data were collected between 2013 and 2015 through focus group discussions (FGDs), key informant interviews and the two-round panel survey to cover both the summer and winter seasons at each site. RESULTS: Home gardening led to a significant positive increase in the consumption of white roots and tubers, dark green leafy vegetables, orange-coloured fruit and other fruit in the 24 h prior to the survey. Participation in a community garden led to significant increases in the consumption of dark green leafy vegetables and other vegetables. School gardening did not demonstrate any statistical relationships with the consumption of foods from the crop-related food groups. Crop production improved dietary diversity. Selling produce and irrigation showed a stronger improvement in dietary diversity. Seasonality affected the availability of fresh fruit and vegetables for home consumption in winter. CONCLUSIONS: Producing beyond that solely for home consumption has greater benefits for dietary diversity and a consumption-smoothing effect during the post-harvest period. Politicians and the scientific community should recognise the role that household and small-scale crop production plays in supporting household consumption and the provision of essential micronutrients despite constraints and disincentives. Production and education programmes should focus on strengthening existing good consumption patterns and promoting the consumption of foods that can improve dietary diversity.


Assuntos
Estado Nutricional , População Rural , Dieta , Abastecimento de Alimentos , Humanos , África do Sul , Verduras
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa