Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Environ Monit Assess ; 196(8): 767, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073498

RESUMO

In near-road neighborhoods, residents are more frequently exposed to traffic-related air pollution (TRAP), and they are increasingly aware of pollution levels. Given this consideration, this study adopted portable air pollutant sensors to conduct a mobile monitoring campaign in two near-road neighborhoods, one in an urban area and one in a suburban area of Shanghai, China. The campaign characterized spatiotemporal distributions of fine particulate matter (PM2.5) and black carbon (BC) to help identify appropriate mitigation measures in these near-road micro-environments. The study identified higher mean TRAP concentrations (up to 4.7-fold and 1.7-fold higher for PM2.5 and BC, respectively), lower spatial variability, and a stronger inter-pollutant correlation in winter compared to summer. The temporal variations of TRAP between peak hour and off-peak hour were also investigated. It was identified that district-level PM2.5 increments occurred from off-peak to peak hours, with BC concentrations attributed more to traffic emissions. In addition, the spatiotemporal distribution of TRAP inside neighborhoods revealed that PM2.5 concentrations presented great temporal variability but almost remained invariant in space, while the BC concentrations showed notable spatiotemporal variability. These findings provide valuable insights into the unique spatiotemporal distributions of TRAP in different near-road neighborhoods, highlighting the important role of hyperlocal monitoring in urban micro-environments to support tailored designing and implementing appropriate mitigation measures.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Emissões de Veículos , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , China , Poluição do Ar/estatística & dados numéricos , Poluição Relacionada com o Tráfego/análise , Fuligem/análise
2.
BMC Med ; 21(1): 341, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37674158

RESUMO

BACKGROUND: Prenatal air pollution exposure may increase risk for childhood obesity. However, few studies have evaluated in utero growth measures and infant weight trajectories. This study will evaluate the associations of prenatal exposure to ambient air pollutants with weight trajectories from the 3rd trimester through age 2 years. METHODS: We studied 490 pregnant women who were recruited from the Maternal and Development Risks from Environmental and Social Stressors (MADRES) cohort, which comprises a low-income, primarily Hispanic population in Los Angeles, California. Nitrogen dioxide (NO2), particulate matter < 10 µm (PM10), particulate matter < 2.5 µm (PM2.5), and ozone (O3) concentrations during pregnancy were estimated from regulatory air monitoring stations. Fetal weight was estimated from maternal ultrasound records. Infant/child weight measurements were extracted from medical records or measured during follow-up visits. Piecewise spline models were used to assess the effect of air pollutants on weight, overall growth, and growth during each period. RESULTS: The mean (SD) prenatal exposure concentrations for NO2, PM2.5, PM10, and O3 were 16.4 (2.9) ppb, 12.0 (1.1) µg/m3, 28.5 (4.7) µg/m3, and 26.2 (2.9) ppb, respectively. Comparing an increase in prenatal average air pollutants from the 10th to the 90th percentile, the growth rate from the 3rd trimester to age 3 months was significantly increased (1.55% [95%CI 1.20%, 1.99%] for PM2.5 and 1.64% [95%CI 1.27%, 2.13%] for NO2), the growth rate from age 6 months to age 2 years was significantly decreased (0.90% [95%CI 0.82%, 1.00%] for NO2), and the attained weight at age 2 years was significantly lower (- 7.50% [95% CI - 13.57%, - 1.02%] for PM10 and - 7.00% [95% CI - 11.86%, - 1.88%] for NO2). CONCLUSIONS: Prenatal ambient air pollution was associated with variable changes in growth rate and attained weight from the 3rd trimester to age 2 years. These results suggest continued public health benefits of reducing ambient air pollution levels, particularly in marginalized populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Trajetória do Peso do Corpo , Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Lactente , Feminino , Humanos , Pré-Escolar , Estudos de Coortes , Dióxido de Nitrogênio/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos
3.
Environ Res ; 227: 115720, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940820

RESUMO

Air pollution is acknowledged as a determinant of blood pressure (BP), supporting the hypothesis that air pollution, via hypertension and other mechanisms, has detrimental effects on human health. Previous studies evaluating the associations between air pollution exposure and BP did not consider the effect that air pollutant mixtures may have on BP. We investigated the effect of exposure to single species or their synergistic effects as air pollution mixture on ambulatory BP. Using portable sensors, we measured personal concentrations of black carbon (BC), nitrogen dioxide (NO2), nitrogen monoxide (NO), carbon monoxide (CO), ozone (O3), and particles with aerodynamic diameters below 2.5 µm (PM2.5). We simultaneously collected ambulatory BP measurements (30-min intervals, N = 3319) of 221 participants over one day of their lives. Air pollution concentrations were averaged over 5 min to 1 h before each BP measurement, and inhaled doses were estimated across the same exposure windows using estimated ventilation rates. Fixed-effect linear models as well as quantile G-computation techniques were applied to associate air pollutants' individual and combined effects with BP, adjusting for potential confounders. In mixture models, a quartile increase in air pollutant concentrations (BC, NO2, NO, CO, and O3) in the previous 5 min was associated with a 1.92 mmHg (95% CI: 0.63, 3.20) higher systolic BP (SBP), while 30-min and 1-h exposures were not associated with SBP. However, the effects on diastolic BP (DBP) were inconsistent across exposure windows. Unlike concentration mixtures, inhalation mixtures in the previous 5 min to 1 h were associated with increased SBP. Out-of-home BC and O3 concentrations were more strongly associated with ambulatory BP outcomes than in-home concentrations. In contrast, only the in-home concentration of CO reduced DBP in stratified analyses. This study shows that exposure to a mixture of air pollutants (concentration and inhalation) was associated with elevated SBP.


Assuntos
Poluição do Ar , Pressão Sanguínea , Exposição Ambiental , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitorização Ambulatorial da Pressão Arterial , Exposição Ambiental/estatística & dados numéricos , Dióxido de Nitrogênio/análise , Ozônio/toxicidade , Ozônio/análise , Material Particulado/toxicidade , Material Particulado/análise
4.
Environ Res ; 233: 116426, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336432

RESUMO

Air pollution is a significant contributor to the global burden of disease with a plethora of associated health effects such as pulmonary and systemic inflammation. C-reactive protein (CRP) is associated with a wide range of diseases and is associated with several exposures. Studies on the effect of air pollution exposure on CRP levels in low to moderate pollution settings have shown inconsistent results. In this cross-sectional study high sensitivity CRP measurements on 18,463 Danish blood donors were linked to modelled air pollution data for NOx, NO2, O3, CO, SO2, NH3, mineral dust, black carbon, organic carbon, sea salt, secondary inorganic aerosols and its components, primary PM2.5, secondary organic aerosols, total PM2.5, and total PM10 at their residential address over the previous month. Associations were analysed using ordered logistic regression with CRP quartile as individuals outcome and air pollution exposure as scaled deciles. Analyses were adjusted for health related and socioeconomic covariates using health questionnaires and Danish register data. Exposure to different air pollution components was generally associated with higher CRP (odds ratio estimates ranging from 1.11 to 1.67), while exposure to a few air pollution components was associated with lower CRP. For example, exposure to NO2 increased the odds of high CRP 1.32-fold (95%CI 1.16-1.49), while exposure to NH3 decreased the odds of high CRP 0.81-fold (95%CI 0.73-0.89). This large study among healthy individuals found air pollution exposure to be associated with increased levels of CRP even in a setting with low to moderate air pollution levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doadores de Sangue , Proteína C-Reativa/análise , Carbono/análise , Estudos Transversais , Dinamarca/epidemiologia , Poeira/análise , Exposição Ambiental/análise , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análise
5.
Environ Health ; 22(1): 50, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386634

RESUMO

BACKGROUND: Air pollution is a large environmental health hazard whose exposure and health effects are unequally distributed among individuals. This is, at least in part, due to gene-environment interactions, but few studies exist. Thus, the current study aimed to explore genetic susceptibility to airway inflammation from short-term air pollution exposure through mechanisms of gene-environment interaction involving the SFTPA, GST and NOS genes. METHODS: Five thousand seven hundred two adults were included. The outcome measure was fraction of exhaled nitric oxide (FeNO), at 50 and 270 ml/s. Exposures were ozone (O3), particulate matter < 10 µm (PM10), and nitrogen dioxide (NO2) 3, 24, or 120-h prior to FeNO measurement. In the SFTPA, GST and NOS genes, 24 single nucleotide polymorphisms (SNPs) were analyzed for interaction effects. The data were analyzed using quantile regression in both single-and multipollutant models. RESULTS: Significant interactions between SNPs and air pollution were found for six SNPs (p < 0.05): rs4253527 (SFTPA1) with O3 and NOx, rs2266637 (GSTT1) with NO2, rs4795051 (NOS2) with PM10, NO2 and NOx, rs4796017 (NOS2) with PM10, rs2248814 (NOS2) with PM10 and rs7830 (NOS3) with NO2. The marginal effects on FeNO for three of these SNPs were significant (per increase of 10 µg/m3):rs4253527 (SFTPA1) with O3 (ß: 0.155, 95%CI: 0.013-0.297), rs4795051 (NOS2) with PM10 (ß: 0.073, 95%CI: 0.00-0.147 (single pollutant), ß: 0.081, 95%CI: 0.004-0.159 (multipollutant)) and NO2 (ß: -0.084, 95%CI: -0.147; -0.020 (3 h), ß: -0.188, 95%CI: -0.359; -0.018 (120 h)) and rs4796017 (NOS2) with PM10 (ß: 0.396, 95%CI: 0.003-0.790). CONCLUSIONS: Increased inflammatory response from air pollution exposure was observed among subjects with polymorphisms in SFTPA1, GSTT1, and NOS genes, where O3 interacted with SFTPA1 and PM10 and NO2/NOx with the GSTT1 and NOS genes. This provides a basis for the further exploration of biological mechanisms as well as the identification of individuals susceptible to the effects of outdoor air pollution.


Assuntos
Poluição do Ar , Predisposição Genética para Doença , Adulto , Humanos , Dióxido de Nitrogênio/efeitos adversos , Poluição do Ar/efeitos adversos , Óxido Nítrico , Inflamação/induzido quimicamente , Inflamação/genética , Polimorfismo de Nucleotídeo Único
6.
Am J Respir Crit Care Med ; 205(6): 651-662, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34881681

RESUMO

Rationale: Risk factors for coronavirus disease (COVID-19) mortality may include environmental exposures such as air pollution. Objectives: To determine whether, among adults hospitalized with PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), long-term air pollution exposure is associated with the risk of mortality, ICU admission, or intubation. Methods: We performed a retrospective analysis of SARS-CoV-2 PCR-positive patients admitted to seven New York City hospitals from March 8, 2020, to August 30, 2020. The primary outcome was mortality; secondary outcomes were ICU admission and intubation. We estimated the annual average fine particulate matter (particulate matter ⩽2.5 µm in aerodynamic diameter [PM2.5]), nitrogen dioxide (NO2), and black carbon (BC) concentrations at patients' residential address. We employed double robust Poisson regression to analyze associations between the annual average PM2.5, NO2, and BC exposure level and COVID-19 outcomes, adjusting for age, sex, race or ethnicity, hospital, insurance, and the time from the onset of the pandemic. Results: Among the 6,542 patients, 41% were female and the median age was 65 (interquartile range, 53-77) years. Over 50% self-identified as a person of color (n = 1,687 [26%] Hispanic patients; n = 1,659 [25%] Black patients). Air pollution exposure levels were generally low. Overall, 31% (n = 2,044) of the cohort died, 19% (n = 1,237) were admitted to the ICU, and 16% (n = 1,051) were intubated. In multivariable models, a higher level of long-term exposure to PM2.5 was associated with an increased risk of mortality (risk ratio, 1.11 [95% confidence interval, 1.02-1.21] per 1-µg/m3 increase in PM2.5) and ICU admission (risk ratio, 1.13 [95% confidence interval, 1.00-1.28] per 1-µg/m3 increase in PM2.5). In multivariable models, neither NO2 nor BC exposure was associated with COVID-19 mortality, ICU admission, or intubation. Conclusions: Among patients hospitalized with COVID-19, a higher long-term PM2.5 exposure level was associated with an increased risk of mortality and ICU admission.


Assuntos
Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Exposição Ambiental/efeitos adversos , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/terapia , Carbono/efeitos adversos , Cuidados Críticos , Feminino , Hospitalização , Humanos , Intubação Intratraqueal , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Respiração Artificial , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo
7.
Soc Sci Res ; 111: 102867, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36898795

RESUMO

Despite growing understanding of racial and class injustice in vehicular air pollution exposure, less is known about the relationship between people's exposure to vehicular air pollution and their contribution to it. Taking Los Angeles as a case study, this study examines the injustice in vehicular PM2.5 exposure by developing an indicator that measures local populations' vehicular PM2.5 exposure adjusted by their vehicle trip distances. This study applies random forest regression models to assess how travel behavior, demographic, and socioeconomic characteristics affect this indicator. The results indicate that census tracts of the periphery whose residents drive longer distances are exposed to less vehicular PM2.5 pollution than tracts in the city center whose residents drive shorter distances. Ethnic minority and low-income tracts emit little vehicular PM2.5 and are particularly exposed to it, while White and high-income tracts generate more vehicular PM2.5 pollution but are less exposed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Exposição Ambiental/análise , Etnicidade , Grupos Minoritários , Poluição do Ar/análise
8.
Environ Sci Technol ; 56(18): 12886-12897, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044680

RESUMO

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved R2 = 0.66 and RMSE = 9391.8#/cm3 (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise
9.
Environ Sci Technol ; 56(24): 17795-17804, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472388

RESUMO

Oxidative potential (OP) has been proposed as a possible integrated metric for particles smaller than 2.5 µm in diameter (PM2.5) to evaluate adverse health outcomes associated with particulate air pollution exposure. Here, we investigate how OP depends on sources and chemical composition and how OP varies by land use type and neighborhood socioeconomic position in the Los Angeles area. We measured OH formation (OPOH), dithiothreitol loss (OPDTT), black carbon, and 52 metals and elements for 54 total PM2.5 samples collected in September 2019 and February 2020. The Positive Matrix Factorization source apportionment model identified four sources contributing to volume-normalized OPOH: vehicular exhaust, brake and tire wear, soil and road dust, and mixed secondary and marine. Exhaust emissions contributed 42% of OPOH, followed by 21% from brake and tire wear. Similar results were observed for the OPDTT source apportionment. Furthermore, by linking measured PM2.5 and OP with census tract level socioeconomic and health outcome data provided by CalEnviroScreen, we found that the most disadvantaged neighborhoods were exposed to both the most toxic particles and the highest particle concentrations. OPOH exhibited the largest inverse social gradients, followed by OPDTT and PM2.5 mass. Finally, OPOH was the metric most strongly correlated with adverse health outcome indicators.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Los Angeles , Emissões de Veículos/análise , Poeira/análise , Fatores Socioeconômicos , Estresse Oxidativo , Monitoramento Ambiental/métodos
10.
Environ Res ; 206: 112523, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929187

RESUMO

OBJECTIVES: Exposure to air pollution is associated with increased risks of several adverse conditions in newborns, such as preterm birth. Whether air pollution is associated with neonatal hyperbilirubinemia remains unclear. We aimed to develop and validate an air-quality-based model to better predict neonatal hyperbilirubinemia. METHODS: A multicenter, population-based cohort of neonates with a gestational age (GA) ≥35 weeks and birth weight ≥2000 g was enrolled in the study. The study was conducted in Shanghai, China, from July 2017 to December 2018. The daily average concentrations of particulate matter (PM) with aerodynamic diameters≤2.5 µm (PM2.5) and ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) were measured. Neonatal hyperbilirubinemia was diagnosed according to the American Academy of Pediatrics (AAP) guidelines by trained neonatologists. We used logistic least absolute shrinkage and selection operator (LASSO) regression to screen air pollutant indicators related to neonatal hyperbilirubinemia and build an air-quality signature for each patient. An air-quality-based nomogram was then established to predict the risk of neonatal hyperbilirubinemia. RESULTS: A total of 11196 neonates were evaluated. Prenatal PM10, CO and NO2 exposure and postpartum SO2 exposure were significantly associated with neonatal hyperbilirubinemia. The air-quality score was calculated according to the hyperbilirubinemia-related pollutants. The air-quality score of the hyperbilirubinemia group was significantly higher than that of the nonhyperbilirubinemia group (P < .01, odds ratio = 2.97). An air-quality-based logistic regression model was built and showed good discrimination (C-statistic of 0.675 [95% CI (confidence interval), 0.658 to 0.692]) and good calibration. Decision curve analysis showed that the air-quality-based model was better than the traditional clinical model in predicting neonatal hyperbilirubinemia. CONCLUSIONS: The findings of this study suggest that ambient air pollution exposure is associated with an increased risk of neonatal hyperbilirubinemia. Our results encourage further exploration of this possibility in future studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hiperbilirrubinemia Neonatal , Nascimento Prematuro , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , China/epidemiologia , Feminino , Humanos , Hiperbilirrubinemia Neonatal/induzido quimicamente , Hiperbilirrubinemia Neonatal/epidemiologia , Lactente , Recém-Nascido , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Gravidez , Nascimento Prematuro/induzido quimicamente
11.
Environ Res ; 206: 112583, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922978

RESUMO

BACKGROUND: Prenatal exposure to fine particulate matter with a diameter of ≤2.5 µm (PM2.5) has been linked to adverse neurodevelopmental outcomes in later childhood, while research on early infant behavior remains sparse. OBJECTIVES: We examined associations between prenatal PM2.5 exposure and infant negative affectivity, a stable temperamental trait associated with longer-term behavioral and mental health outcomes. We also examined sex-specific effects. METHODS: Analyses included 559 mother-infant pairs enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort. Daily PM2.5 exposure based on geocoded residential address during pregnancy was estimated using a satellite-based spatiotemporal model. Domains of negative affectivity (Sadness, Distress to Limitations, Fear, Falling Reactivity) were assessed using the Infant Behavior Questionnaire-Revised (IBQ-R) when infants were 6 months old. Subscale scores were calculated as the mean of item-specific responses; the global Negative Affectivity (NA) score was derived by averaging the mean of the four subscale scores. Bayesian distributed lag interaction models (BDLIMs) were used to identify sensitive windows for prenatal PM2.5 exposure on global NA and its subscales, and to examine effect modification by sex. RESULTS: Mothers were primarily racial/ethnic minorities (38% Black, 37% Hispanic), 40% had ≤12 years of education; most did not smoke during pregnancy (87%). In the overall sample, BDLIMs revealed that increased PM2.5 at mid-pregnancy was associated with higher global NA, Sadness, and Fear scores, after adjusting for covariates (maternal age, education, race/ethnicity, sex). Among boys, increased PM2.5 at early pregnancy was associated with decreased Fear scores, while exposure during late pregnancy was associated with increased Fear scores (cumulative effect estimate = 0.57, 95% CI: 0.03-1.41). Among girls, increased PM2.5 during mid-pregnancy was associated with higher Fear scores (cumulative effect estimate = 0.82, 95% CI: 0.05-1.91). CONCLUSIONS: Prenatal PM2.5 exposure was associated with negative affectivity at age 6 months, and the sensitive windows may vary by subdomains and infant sex.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Teorema de Bayes , Criança , Feminino , Humanos , Lactente , Masculino , Exposição Materna , Material Particulado/análise , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Temperamento
12.
Respir Res ; 22(1): 80, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711988

RESUMO

BACKGROUND: Short-term exposure to ozone and nitrogen dioxide is a risk factor for acute exacerbation (AE) of idiopathic pulmonary fibrosis (AE-IPF). The comprehensive roles of exposure to fine particulate matter in AE-IPF remain unclear. We aim to investigate the association of short-term exposure to fine particulate matter with the incidence of AE-IPF and to determine the exposure-risk time window during 3 months before the diagnosis of AE-IPF. METHODS: IPF patients were retrospectively identified from the nationwide registry in Japan. We conducted a case-control study to assess the correlation between AE-IPF incidence and short-term exposure to eight air pollutants, including particulate matter < 2.5 µm (PM2.5). In the time-series data, we compared monthly mean exposure concentrations between months with AE (case months) and those without AE (control months). We used multilevel mixed-effects logistic regression models to consider individual and institutional-level variables, and also adjusted these models for several covariates, including temperature and humidity. An additional analysis with different monthly lag periods was conducted to determine the risk-exposure time window for 3 months before the diagnosis of AE-IPF. RESULTS: Overall, 152 patients with surgically diagnosed IPF were analyzed. AE-IPF was significantly associated with an increased mean exposure level of nitric oxide (NO) and PM2.5 30 days prior to AE diagnosis. Adjusted odds ratio (OR) with a 10 unit increase in NO was 1.46 [95% confidence interval (CI) 1.11-1.93], and PM2.5 was 2.56 (95% CI 1.27-5.15). Additional analysis revealed that AE-IPF was associated with exposure to NO during the lag periods lag 1, lag 2, lag 1-2, and lag 1-3, and PM2.5 during the lag periods lag 1 and lag 1-2. CONCLUSIONS: Our results show that PM2.5 is a risk factor for AE-IPF, and the risk-exposure time window related to AE-IPF may lie within 1-2 months before the AE diagnosis. Further investigation is needed on the novel findings regarding the exposure to NO and AE-IPF.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/epidemiologia , Material Particulado/efeitos adversos , Idoso , Poluentes Atmosféricos/análise , Estudos de Casos e Controles , Estudos Cross-Over , Exposição Ambiental/análise , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/cirurgia , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Material Particulado/análise , Estudos Retrospectivos , Fatores de Risco
13.
Environ Res ; 196: 110823, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548296

RESUMO

BACKGROUND: Previously, numerous epidemiologic studies reported an association between autism spectrum disorder (ASD) and exposure to air pollution during pregnancy. However, there have been no metabolomics studies investigating the impact of pregnancy pollution exposure to ASD risk in offspring. OBJECTIVES: To identify differences in maternal metabolism that may reflect a biological response to exposure to high air pollution in pregnancies of offspring who later did or did not develop ASD. METHODS: We obtained stored mid-pregnancy serum from 214 mothers who lived in California's Central Valley and experienced the highest levels of air pollution during early pregnancy. We estimated each woman's average traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 µm) during the first trimester using the California Line Source Dispersion Model, version 4 (CALINE4). By utilizing liquid chromatography-high resolution mass spectrometry, we identified the metabolic profiles of maternal serum for 116 mothers with offspring who later developed ASD and 98 control mothers. Partial least squares discriminant analysis (PLS-DA) was employed to select metabolic features associated with air pollution exposure or autism risk in offspring. We also conducted extensive pathway enrichment analysis to elucidate potential ASD-related changes in the metabolome of pregnant women. RESULTS: We extracted 4022 and 4945 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for potential confounders, we identified 167 and 222 discriminative features (HILIC and C18, respectively). Pathway enrichment analysis to discriminate metabolic features associated with ASD risk indicated various metabolic pathway perturbations linked to the tricarboxylic acid (TCA) cycle and mitochondrial function, including carnitine shuttle, amino acid metabolism, bile acid metabolism, and vitamin A metabolism. CONCLUSION: Using high resolution metabolomics, we identified several metabolic pathways disturbed in mothers with ASD offspring among women experiencing high exposure to traffic-related air pollution during pregnancy that were associated with mitochondrial dysfunction. These findings provide us with a better understanding of metabolic disturbances involved in the development of ASD under adverse environmental conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Feminino , Humanos , Exposição Materna/estatística & dados numéricos , Metabolômica , Gravidez
14.
Environ Res ; 192: 110330, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068582

RESUMO

BACKGROUND: Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand. METHODS: This longitudinal cohort study was conducted for 9 years from 2005 to 2013. Self-reported morbidities in this study included high blood pressure, high blood cholesterol, and diabetes. Air pollution data were obtained from the Thai government Pollution Control Department (PCD). Particles with diameters ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) exposures were estimated with ordinary kriging method using 22 background and 7 traffic monitoring stations in BMR during 2005-2013. Long-term exposure periods to air pollution for each subject was averaged as the same period of person-time. Cox proportional hazards models were used to examine the association between long-term air pollution exposure with self-reported high blood pressure, high blood cholesterol, diabetes. Results of self-reported morbidity were presented as hazard ratios (HRs) per interquartile range (IQR) increase in PM10, O3, NO2, SO2, and CO. RESULTS: After controlling for potential confounders, we found that an IQR increase in PM10 was significantly associated with self-reported high blood pressure (HR = 1.13, 95% CI: 1.04, 1.23) and high blood cholesterol (HR = 1.07, 95%CI: 1.02, 1.12), but not with diabetes (HR = 1.05, 95%CI: 0.91, 1.21). SO2 was also positively associated with self-reported high blood pressure (HR = 1.22, 95%CI: 1.08, 1.38), high blood cholesterol (HR = 1.20, 95%CI: 1.11, 1.30), and diabetes (HR = 1.21, 95%CI: 0.92, 1.60). Moreover, we observed a positive association between CO and self-reported high blood pressure (HR = 1.07, 95%CI: 1.00, 1.15), but not for other diseases. However, self-reported morbidities were not associated with O3 and NO2. CONCLUSIONS: Long-term exposure to air pollution, especially for PM10 and SO2 was associated with self-reported high blood pressure, high blood cholesterol, and diabetes in subjects of TCS. Our study supports that exposure to air pollution increases cardiovascular disease risk factors for younger population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , China , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Estudos Longitudinais , Morbidade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Material Particulado/análise , Autorrelato , Tailândia/epidemiologia
15.
J Endocrinol Invest ; 44(7): 1515-1523, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33159683

RESUMO

OBJECTIVES: There are still controversies about the impact of climatic and environmental factors on thyroid function parameters in healthy populations. We investigated the relationships between climate, air pollution exposure, and thyroid function fluctuations. METHODS: We retrospectively reviewed 327,913 individuals attending routine health checks from December 2013 to December 2018. We analyzed the associations between thyroid function and climatic factors using Spearman's correlation analysis. We explored the relationships between thyroid function and air pollution exposure using multiple linear regression analysis, after adjusting for age, sex, season, and outdoor temperature. We also performed subgroup analyses by age and sex and sensitivity analyses of different anti-thyroid peroxidase antibody status. RESULTS: Thyroid-stimulating hormone (TSH) and free triiodothyronine (FT3) were negatively associated with outdoor temperature (r = - 0.66, P < 0.001; r = - 0.55, P < 0.001), while free thyroxine (FT4) and FT4/FT3 were positively associated with temperature (r = 0.35, P < 0.001; r = 0.79, P < 0.001). An increase of 10 µg/m3 in fine particulate matter ≤ 2.5 µm (PM2.5) was associated with a decrease of 0.12 pmol/L in FT4 and an increase of 0.07 pmol/L in FT3 (both P < 0.01). FT4/FT3 was significantly negatively associated with PM2.5 (coefficient: - 0.06, P < 0.01). These results remained robust in hierarchical analyses and sensitivity analyses. CONCLUSIONS: Thyroid function parameters are associated with climate and air pollution exposure. These factors may influence variations in thyroid function. Our results also highlight the importance of public health interventions to reduce air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Clima , Doenças da Glândula Tireoide/patologia , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Estudos Transversais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Doenças da Glândula Tireoide/epidemiologia , Doenças da Glândula Tireoide/etiologia , Doenças da Glândula Tireoide/metabolismo , Testes de Função Tireóidea , Glândula Tireoide/metabolismo , Adulto Jovem
16.
Int J Health Geogr ; 19(1): 23, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563251

RESUMO

BACKGROUND: Some studies have reported that air pollution exposure can have adverse effects on pregnancy outcomes. However, the disparity between urban and rural areas in the risk of preterm birth (PTB) has yet to be elucidated. Considering geographic contexts as homogeneous or ignoring urban-rural differences cannot accurately reveal the disparities in the health effects of air pollution under different geographic contexts. The aims of this study were to examine the disparities in the risks of PTB in three different regions and five urban-rural types and to investigate the extent to which fine particulate matter (PM2.5) exposure during the entire pregnancy can explain the variations. METHODS: We collected data on 429,865 singleton newborns born in 2014 in Hubei Province, China, and divided Hubei Province into three regions. Spatial correlation methods were employed to measure the associations between the rate of PTB and air pollution using average annual indexes for the entire province and regions. A series of multilevel logistic models were conducted to examine disparities in the risks of PTB with decreases in urbanity and the effects of air pollution exposure on the occurrence of preterm births. RESULTS: The PM2.5 concentration was significantly different across the regions. The eastern region had the most wide-ranged and serious level of pollution, whereas the levels in the middle and western regions weakened. The odds of PTB and air pollution exhibited a positive spatial correlation for the entire province and in the east (BiMoran's I = 0.106 and 0.697, respectively). Significant urban-rural disparities in the risks of PTB were noted in the east and middle regions, and the mean PM2.5 exposure during the entire pregnancy was positively associated with PTB risk. However, in the west, the results showed weak differences in the risks of PTB among the five urban-rural types and an insignificant effect of PM2.5 exposure. The direction of the effect of district/county-level income on PTB varied by region. CONCLUSIONS: This study finds that air pollution exposure and PTB have significant and positive spatial relationships in areas with a serious air pollution burden. The risks of PTB in three regions of Hubei Province follow the same W-shaped pattern as urbanity decreases and rurality increases. High levels of air pollution exposure may be an important disadvantage for urban pregnant women in this setting.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Resultado da Gravidez/epidemiologia , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia
17.
Ecotoxicol Environ Saf ; 191: 110232, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31986457

RESUMO

Air pollution has been considered as one of the most important factors associating with various birth outcomes. However, the seasonal response of maternal comorbidities effects associated with air pollution has not been investigated, especially in the city with distinguish seasonal pattern and long heating seasons. In this work, 69,945 live births were investigated from 2013 to 2016, and the seasonal relationship between air pollution and preterm birth and low birth weight were assessed, as well as the synergism of maternal comorbidities. Exposures of six pollutants were assigned to maternal residences during pregnancy. The potential effect modification by maternal comorbidities on the associations was evaluated between prenatal air pollution and preterm birth (PTB), as well as effects of seasons and trimesters. Adjusting for seasonality, all six pollutants presented seasonal relationship with preterm birth, which CO, PM10, NO2, and PM2.5 were with [odds ratio (OR) = 1.035 95% CI: 1.015, 1.055, OR = 1.039 95% CI: 1.034, 1.045, OR = 1.042, 95% CI: 1.029, 1.056 and OR = 1.085 95% CI 1.073, 1.097, respectively] for tenth quartile of 10 µg/m3 range increased in autumn (the beginning of heating season). For O3, it associated with PTB in winter and spring with OR = 1.113 95% CI: 1.104, 1.123, and OR = 1.155 95% CI: 1.145, 1.165, respectively. The OR increase of PTB for exposure to all six pollutants was higher among women with preeclampsia and gestational hypertension. The associations between ambient air pollution and preterm birth were modified by gestational hypertension and preeclampsia. The seasonal patterns of six studied air pollutants increases the risk of PTB in autumn and winter distinguishably, which may due to the sudden increased concentrations of pollutants emitted by traditional heating. The seasonal response of the synergism of maternal comorbidities and long-term air pollution exposure on birth outcomes is supported by the data sets of preterm birth.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Materna , Nascimento Prematuro/epidemiologia , Estações do Ano , Poluentes Atmosféricos/análise , Poluição do Ar , Comorbidade , Feminino , Humanos , Hipertensão Induzida pela Gravidez , Recém-Nascido de Baixo Peso , Recém-Nascido , Razão de Chances , Pré-Eclâmpsia , Gravidez , Resultado da Gravidez , Trimestres da Gravidez
18.
Atmos Environ (1994) ; 203: 271-280, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31749659

RESUMO

In anticipation of the expanding appreciation for air quality models in health outcomes studies, we develop and evaluate a reduced-complexity model for pollution transport that intentionally sacrifices some of the sophistication of full-scale chemical transport models in order to support applicability to a wider range of health studies. Specifically, we introduce the HYSPLIT average dispersion model, HyADS, which combines the HYSPLIT trajectory dispersion model with modern advances in parallel computing to estimate ZIP code level exposure to emissions from individual coal-powered electricity generating units in the United States. Importantly, the method is not designed to reproduce ambient concentrations of any particular air pollutant; rather, the primary goal is to characterize each ZIP code's exposure to these coal power plants specifically. We show adequate performance towards this goal against observed annual average air pollutant concentrations (nationwide Pearson correlations of 0.88 and 0.73 with SO 4 2 - and PM2.5, respectively) and coal-combustion impacts simulated with a full-scale chemical transport model and adjusted to observations using a hybrid direct sensitivities approach (correlation of 0.90). We proceed to provide multiple examples of HyADS's single-source applicability, including to show that 22% of the population-weighted coal exposure comes from 30 coal-powered electricity generating units.

19.
Ecotoxicol Environ Saf ; 167: 317-323, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343146

RESUMO

To interpret the relationship of the seasonal pattern of air pollution exposure associated with increased risk of congenital anomalies (CA) and the trimester-specific effects. In this work, 55,428 hospital records with 847 doctor-diagnosed CA from July 2013 to December 2016 were collected in Hohhot, China. Maternal exposure to critical air pollutants (SO2, CO, PM10, O3, NO2 and PM2.5) were estimated using an inverse distance weighted (IDW) method on the basis of the ambient air quality monitoring stations. Logistic regression analysis was employed to determine the association of CA (in terms of odds ratio (OR) and 95% confidence interval (CI)) in three trimesters with heating/none heating season exposure. The results showed that CO exposure was found a significant association with ORs (95% CI) 1.58 (1.09, 2.27) changing from IQR2-3 and 1.40 (1.01, 1.93) changing from IQR3-IQR4 in 1st trimester and 1.51 (1.12, 2.04) changing from IQR2-3 in 2nd trimester, respectively. PM10 also presented significant association with ORs (95% CI) 1.42(1.08, 1.86) changing from IQR3-4 in 2nd trimester. Exposure effects were found more obvious in heating season, i.e. CO exposure levels were associated with the risks of CA with IQR changing ORs (95% CI) of 5.21(2.02, 7.44), 2.24 (1.21, 4.15) and 1.84 (1.10, 3.11) in 1st trimester, respectively; PM2.5 exposure levels were associated with the risks of CA with IQR changing ORs (95% CI) of 3.76 (1.48, 6.55), 2.45 (1.10, 5.44) and 3.30 (1.63, 6.67) in 2nd trimester, respectively. Our findings suggested some positive associations of pregnancy and CA with maternal exposure to ambient CO and PM2.5 during the 1st and 2nd trimester after controlling for maternal comorbidities general covariates and other pollutants. PM10 was also found significantly associated with increased risk of CA in 2nd trimester besides seasons. There was no association found in 3rd trimester.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Anormalidades Congênitas/diagnóstico , Estações do Ano , Monóxido de Carbono/toxicidade , China , Anormalidades Congênitas/etiologia , Feminino , Humanos , Modelos Logísticos , Exposição Materna/efeitos adversos , Dióxido de Nitrogênio/toxicidade , Ozônio/toxicidade , Material Particulado/toxicidade , Gravidez , Medição de Risco , Fatores de Risco , Dióxido de Enxofre/toxicidade
20.
Environ Res ; 161: 472-478, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29220800

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) exposure has been linked to type 2 diabetes and metabolic dysfunction in humans. Animal studies suggest that air pollutants may alter the composition of the gut microbiota, which may negatively impact metabolic health through changes in the composition and/or function of the gut microbiome. OBJECTIVES: The primary aim of this study was to determine whether elevated TRAP exposure was correlated with gut bacterial taxa in overweight and obese adolescents from the Meta-AIR (Metabolic and Asthma Incidence Research) study. The secondary aim was to examine whether gut microbial taxa correlated with TRAP were also correlated with risk factors for type 2 diabetes (e.g., fasting glucose levels). We additionally explored whether correlations between TRAP and these metabolic risk factors could be explained by the relative abundance of these taxa. METHODS: Participants (17-19 years; n=43) were enrolled between 2014 and 2016 from Southern California. The CALINE4 line dispersion model was used to model prior year residential concentrations of nitrogen oxides (NOx) as a marker of traffic emissions. The relative abundance of fecal microbiota was characterized by 16S rRNA sequencing and spearman partial correlations were examined after adjusting for body fat percent. RESULTS: Freeway TRAP was correlated with decreased Bacteroidaceae (r=-0.48; p=0.001) and increased Coriobacteriaceae (r=0.48; p<0.001). These same taxa were correlated with fasting glucose levels, including Bacteroidaceae (r=-0.34; p=0.04) and Coriobacteriaceae (r=0.41; p<0.01). Further, freeway TRAP was positively correlated fasting glucose (r=0.45; p=0.004) and Bacteroidaceae and Coriobacteriaceae explained 24% and 29% of the correlation between TRAP and fasting glucose levels. CONCLUSIONS: Increased TRAP exposure was correlated with gut microbial taxa and fasting glucose levels. Gut microbial taxa that were correlated with TRAP partially explained the correlation between TRAP and fasting glucose levels. These results suggest that exposure to air pollutants may negatively impact metabolic health via alterations in the gut microbiota.


Assuntos
Poluição do Ar , Microbioma Gastrointestinal , Obesidade , Sobrepeso , Emissões de Veículos , Adolescente , Poluição do Ar/efeitos adversos , California , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , RNA Ribossômico 16S , Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa