Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Respir Crit Care Med ; 209(12): 1453-1462, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324627

RESUMO

Rationale: Pseudomonas aeruginosa is the major bacterial pathogen colonizing the airways of adult patients with cystic fibrosis (CF) and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evade the immune system and antibiotic therapy. Although the ability of P. aeruginosa to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. Objectives: To detect and characterize intracellular P. aeruginosa in CF airway epithelium from human lung explant tissues. Methods: We sampled lung explant tissues from patients with CF undergoing lung transplantation and non-CF lung donor control tissue. We analyzed lung tissue sections for the presence of intracellular P. aeruginosa using quantitative culture and microscopy, in parallel to histopathology and airway morphometry. Measurements and Main Results: P. aeruginosa was isolated from the lungs of seven patients with CF undergoing lung transplantation. Microscopic assessment revealed the presence of intracellular P. aeruginosa within airway epithelial cells in three of the seven patients analyzed at a varying but low frequency. We observed those events occurring in lung regions with high bacterial burden. Conclusions: This is the first study describing the presence of intracellular P. aeruginosa in CF lung tissues. Although intracellular P. aeruginosa in airway epithelial cells is likely relatively rare, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.


Assuntos
Fibrose Cística , Transplante de Pulmão , Pulmão , Infecções por Pseudomonas , Pseudomonas aeruginosa , Mucosa Respiratória , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Feminino , Masculino , Adulto , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Infecções por Pseudomonas/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Adulto Jovem , Células Epiteliais/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39079117

RESUMO

Impaired airway epithelial barrier and decreased expression of E-cadherin are key features of severe asthma. As a gatekeeper of the mucosa, E-cadherin can be cleaved from the cell surface and released into the apical lumen as a soluble form (sE-cadherin).This study was aimed to investigate the role of sE-cadherin in severe asthma.Induced sputum was obtained from healthy subjects and patients with asthma. Two murine models of severe asthma were established using either TDI (toluene diisocyanate) or OVA (ovalbumin)/CFA (complete Freund's adjuvants). The role of sE-cadherin in severe asthma was evaluated by intraperitoneal injection of DECMA-1, a neutralizing antibody against sE-cadherin. Mice or THP-1-derived macrophages were treated with recombinant sE-cadherin to explore the pro-inflammatory mechanism of sE-cadherin.Severe asthma patients had a significantly higher sputum sE-cadherin level than the health subjects with mild to moderate asthma, which were positively correlated with sputum HMGB1 level and glucocorticoid dosage required for daily control. Allergen exposure markedly increased sE-cadherin level in the bronchoalveolar lavage fluid in mice. Treatment of DECMA-1 significantly attenuated allergen-induced airway inflammation and hyperresponsivenes in both models of severe asthma. While exposure to recombinant sE-cadherin dramatically up-regulated VEGF expression in THP-1-derived macrophages, and increased neutophlil and eosinophil infiltration into the airway as well as the release of VEGF and IL-6 in mice, both of which can be suppressed by pharmacological inhibition of ERK signaling.Taken together, our data indicated that sE-cadherin contributed to the airway inflammation of severe asthma in an ERK-depedent pathway.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38843491

RESUMO

The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an Air-Liquid Interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist between media used for ALI-cultured human airway epithelial cells, our study aimed to evaluate the impact of several media (BEGMTM, PneumaCultTM, "Half&Half" and "Clancy") on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCultTM-ALI and Half&Half, stronger EGF signaling from basal cells in BEGMTM-ALI, differential expression of the SARS-CoV-2 entry factor ACE2, and distinct secretome transcripts depending on media used. We also established that proliferation in PneumaCultTM-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will help to choose the most relevant medium according to the processes to be investigated such as cilia, mucus biology or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

4.
Artigo em Inglês | MEDLINE | ID: mdl-39099420

RESUMO

A thin film of pulmonary surfactant lines the surface of the airways and alveoli where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to airway smooth muscle agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on airway smooth muscle is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels (CFTR) was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on airway smooth muscle. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.

5.
Immunology ; 172(3): 329-342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38354831

RESUMO

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Assuntos
Carbocisteína , Estresse Oxidativo , Mucosa Respiratória , Infecções Respiratórias , Viroses , Humanos , Carbocisteína/uso terapêutico , Carbocisteína/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/virologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/efeitos dos fármacos , Viroses/imunologia , Viroses/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-39137525

RESUMO

Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data is limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ('bronchosphere') cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC) cell cultures.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39104315

RESUMO

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice, although the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. Additionally, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared to their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.

8.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
9.
Mol Med ; 30(1): 123, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138434

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with high morbidity and mortality worldwide. Oxidative injury and mitochondrial dysfunction in the airway epithelium are major events in COPD progression. METHODS AND RESULTS: The therapeutic effects of Progesterone (P4) were investigated in vivo and in vitro in this study. In vivo, in a cigarette smoke (CS) exposure-induced COPD mouse model, P4 treatment significantly ameliorated CS exposure-induced physiological and pathological characteristics, including inflammatory cell infiltration and oxidative injury, in a dose-dependent manner. The c-MYC/SIRT1/PGC-1α pathway is involved in the protective function of P4 against CS-induced COPD. In vitro, P4 co-treatment significantly ameliorated H2O2-induced oxidative injury and mitochondrial dysfunctions by promoting cell proliferation, increasing mitochondrial membrane potential, decreasing ROS levels and apoptosis, and increasing ATP content. Moreover, P4 co-treatment partially attenuated H2O2-caused inhibition in Nrf1, Tfam, Mfn1, PGR-B, c-MYC, SIRT1, and PGC-1α levels. In BEAS-2B and ASM cells, the c-MYC/SIRT1 axis regulated P4's protective effects against H2O2-induced oxidative injury and mitochondrial dysfunctions. CONCLUSION: P4 activates the c-MYC/SIRT1 axis, ameliorating CS-induced COPD and protecting both airway epithelial cells and smooth muscle cells against H2O2-induced oxidative damage. PGC-1α and downstream mitochondrial signaling pathways might be involved.


Assuntos
Modelos Animais de Doenças , Peróxido de Hidrogênio , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Progesterona , Doença Pulmonar Obstrutiva Crônica , Sirtuína 1 , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Progesterona/farmacologia , Camundongos , Sirtuína 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peróxido de Hidrogênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Fumar Cigarros/efeitos adversos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Proliferação de Células/efeitos dos fármacos
10.
Thorax ; 79(9): 811-821, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373824

RESUMO

BACKGROUND: In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS: Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS: A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION: Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.


Assuntos
Asma , Células Epiteliais , Células Caliciformes , Infecções por Vírus Respiratório Sincicial , Humanos , Asma/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Células Caliciformes/patologia , Masculino , Feminino , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Mucosa Respiratória/virologia , Mucosa Respiratória/metabolismo , Adulto , Brônquios , Pessoa de Meia-Idade , Células Cultivadas , Vírus Sinciciais Respiratórios , Cílios/patologia , Estudos de Casos e Controles , Molécula 1 de Adesão Intercelular
11.
Thorax ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009441

RESUMO

INTRODUCTION: Asthma is an inflammatory airways disease encompassing multiple phenotypes and endotypes. Several studies suggested gene expression in nasal epithelium to serve as a proxy for bronchial epithelium, being a non-invasive approach to investigate lung diseases. We hypothesised that molecular differences in upper airway epithelium reflect asthma-associated differences in the lower airways and are associated with clinical expression of asthma. METHODS: We analysed nasal epithelial gene expression data from 369 patients with asthma and 58 non-asthmatic controls from the Assessment of Small Airways Involvement in Asthma study. Unsupervised hierarchical clustering was performed on asthma-associated genes. Asthma-associated gene signatures were replicated in independent cohorts with nasal and bronchial brushes data by comparing Gene Set Variation Analysis scores between asthma patients and non-asthmatic controls. RESULTS: We identified 67 higher expressed and 59 lower expressed genes in nasal epithelium from asthma patients compared with controls (false discovery rate<0.05), including CLCA1, CST1 and POSTN, genes well known to reflect asthma in bronchial airway epithelium. Hierarchical clustering revealed several molecular asthma endotypes with distinct clinical characteristics, including an endotype with higher blood and sputum eosinophils, high fractional exhaled nitric oxide, and more severe small airway dysfunction, as reflected by lower forced expiratory flow at 50%. In an independent cohort, we demonstrated that genes higher expressed in the nasal epithelium reflect asthma-associated changes in the lower airways. CONCLUSION: Our results show that the nasal epithelial gene expression profile reflects asthma-related processes in the lower airways. We suggest that nasal epithelium may be a useful non-invasive tool to identify asthma endotypes and may advance personalised management of the disease.

12.
Thorax ; 79(6): 524-537, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286613

RESUMO

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.


Assuntos
Células Epiteliais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia , Células Epiteliais/metabolismo , Masculino , Pessoa de Meia-Idade , Células Cultivadas , Brônquios/patologia , Feminino , Idoso , Óxido de Zinco , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Cílios , Nanopartículas , Diferenciação Celular
13.
Thorax ; 79(7): 680-691, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38631896

RESUMO

BACKGROUND: Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS: PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS: Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS: Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/metabolismo , Biomarcadores/metabolismo , Transtornos Respiratórios
14.
Thorax ; 79(7): 607-614, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38378235

RESUMO

BACKGROUND: Mucociliary clearance (MCC) is critical to lung health and is impaired in many diseases. The path of MCC may have an important impact on clearance but has never been rigorously studied. The objective of this study is to assess the three-dimensional path of human tracheal MCC in disease and health. METHODS: Tracheal MCC was imaged in 12 ex-smokers, 3 non-smokers (1 opportunistically imaged during acute influenza and repeated after recovery) and 5 individuals with primary ciliary dyskinesia (PCD). Radiolabelled macroaggregated albumin droplets were injected into the trachea via the cricothyroid membrane. Droplet movement was tracked via scintigraphy, the path of movement mapped and helical and axial models of tracheal MCC were compared. MEASUREMENTS AND MAIN RESULTS: In 5/5 participants with PCD and 1 healthy participant with acute influenza, radiolabelled albumin coated the trachea and did not move. In all others (15/15), mucus coalesced into globules. Globule movement was negligible in 3 ex-smokers, but in all others (12/15) ascended the trachea in a helical path. Median cephalad tracheal MCC was 2.7 mm/min ex-smokers vs 8.4 mm/min non-smokers (p=0.02) and correlated strongly to helical angle (r=0.92 (p=0.00002); median 18o ex-smokers, 47o non-smokers (p=0.036)), but not to actual speed on helical path (r=0.26 (p=0.46); median 13.6 mm/min ex-smokers vs 13.9 mm/min non-smokers (p=1.0)). CONCLUSION: For the first time, we show that human tracheal MCC is helical, and impairment in ex-smokers is often caused by flattened helical transit, not slower movement. Our methodology provides a simple method to map tracheal MCC and speed in vivo.


Assuntos
Depuração Mucociliar , Traqueia , Humanos , Depuração Mucociliar/fisiologia , Traqueia/diagnóstico por imagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Muco/metabolismo , Transtornos da Motilidade Ciliar/diagnóstico por imagem , Fumar/efeitos adversos , Idoso , Adulto Jovem
15.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
16.
Virol J ; 21(1): 78, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566231

RESUMO

Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Vírus Sincicial Respiratório Humano , Viroses , Vírus , Humanos , Vírus da Parainfluenza 3 Humana , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Epitélio , Antivirais/uso terapêutico
17.
Pulm Pharmacol Ther ; 84: 102284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154519

RESUMO

BACKGROUND: Loss of E-cadherin in the airway epithelial cells is a critical contributor to the development of ALI/ARDS. Yet the underlying mechanisms are largely unknown. Increasing evidences have revealed the significance of ferroptosis in the pathophysiological process of ALI/ARDS. The aim of this study was to investigate the role of ferroptosis in dysregulation of airway epithelial E-cadherin in ALI/ARDS. METHODS: BALB/c mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to establish an ALI model. Two inhibitors of ferroptosis, liproxstatin-1 (Lip-1, at the dose of 10 mg/kg and 30 mg/kg) and ferrostatin-1 (Fer-1, at the dose of 1 mg/kg and 5 mg/kg), were respectively given to the mice through intraperitoneal injection after LPS challenge. The expression of ferroptotic markers, full-length E-cadherin and soluble E-cadherin (sE-cadherin) were both detected. RESULTS: LPS exposure dramatically down-regulated pulmonary expression of E-cadherin in mice, with profound loss of membrane E-cadherin in the airway epithelial cells and increased secretion of sE-cadherin in the airway lumen. At the same time, we found that the mitochondrial of airway epithelial cells in LPS-exposed mice exhibited significant morphological alterations that are hallmark features of ferroptosis, with smaller volume and increased membrane density. Other makers of ferroptosis were also detected, including increased cytoplasmic levels of iron and lipid peroxidates (MDA), as well as decreased GPX4 expression. 30 mg/kg of Lip-1 not only showed potent protective effects against the LPS-induced injury, inflammation, edema of the lung in those mice, but also rescued airway epithelial E-cadherin expression and decreased the release of sE-cadherin through inhibiting ferroptosis. While no noticeable changes induced by LPS were observed in mice treated with Lip-1 at 10 mg/kg nor Fer-1 at 1 mg/kg or 5 mg/kg. CONCLUSIONS: Taken together, these data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Caderinas , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos BALB C
18.
J Asthma ; : 1-10, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38865204

RESUMO

OBJECTIVE: Down-regulation of bronchial epithelial E-cadherin is an important of feature of severe asthma, including steroid-insensitive asthma. Yet, the mechanisms involved in E-cadherin disruption are not fully understood. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in dysregulation of E-cadherin in toluene diisocyanate (TDI)-induced steroid-insensitive asthma. METHODS: A murine model of steroid-insensitive asthma was established by TDI sensitization and aerosol inhalation. Selective GLUT1 antagonists WZB117 and BAY876 were given to BALB/c mice after airway challenge. In vitro, primary human bronchial epithelial cells (HBECs) cultured in an airway-liquid interface (ALI) were exposed to TDI. RESULTS: TDI exposure markedly up-regulated GLUT1 in murine lungs and HBECs. Pharmacological inhibition of GLUT1 with BAY876 decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in vivo. Besides, the TDI-induced down-regulated expression of full-length E-cadherin was also partly recovered, accompanied by inhibited secretion of soluble E-cadherin (sE-cadherin). WZB117 also exhibited mild therapeutic effects, though not significant. In vitro, treatment with GLUT1 inhibitor relieved the TDI-induced disruption of E-cadherin in HBECs. CONCLUSIONS: Taken together, our data demonstrated that GLUT1 modulates bronchial epithelial E-cadherin dysfunction production in TDI-induced steroid-insensitive asthma.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39056463

RESUMO

BACKGROUND: The airway epithelium is the first line of defense of the respiratory system against the external environment. It plays an active role in the initiation of immune and allergic responses against potential hazards. Among the various specialized cells and cytokines that participate in epithelium-induced responses, alarmins are particularly interesting, given their ample role in mediating T2 and non-T2 inflammatory mechanisms involved in the pathogenesis of asthma. Thymic stromal lymphopoietin (TSLP) is an alarmin with broad effects in asthma that result from its widespread action on multiple cell types, including eosinophils, mast cells, dendritic cells, and group-2 innate lymphoid cells. Its role in allergy-mediated responses, eosinophilic inflammation, airway hyperresponsiveness, mucus hyperproduction, viral tolerance, and airway remodeling is of the utmost importance, as more comprehensive asthma assessments have been developed to explore these pathogenic features. Therefore, blockade with targeting molecules, such as monoclonal antibodies, has emerged as a promising therapeutic option, particularly in patients with multiple pathogenic pathways. In this review, we examine the roles of alarmins (mainly TSLP) in the pathogenesis of asthma and clinical expression and discuss the effects of inhibiting TSLP on several inflammatory and clinical outcomes. We also review the literature supporting treatment with anti-TSLP biologics and the unanswered questions and unmet needs associated with targeting alarmins in asthma.

20.
Thorax ; 79(7): 597-598, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38604666
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa