Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 808, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474158

RESUMO

BACKGROUND: Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a serious pest of crops in different regions of the world. Our recent studies on the joint application of Akanthomyces attenuatus (a pathogenic insect fungus) and matrine (a botanical insecticide) against B. tabaci have shown promising results. Using RNA sequencing (RNA-Seq), we identified differentially expressed genes involved in whitefly responses to single or mixed applications of A. attenuatus and matrine. METHODS: In this study, we compared the transcriptome profiles of B. tabaci treated with individual and combined treatments of A. attenuatus and matrine to determine variations in gene expression among whiteflies in response to different treatments. RESULTS: Transcriptomic data analysis showed differential expression of 71, 1194, and 51 genes in response to A. attenuatus (BtA), matrine (BtM), and A. attenuatus + matrine (BtAM) treatment, respectively. A total of 65 common differentially expressed genes (DEGs) were identified between whiteflies treated with A. attenuatus (BtA) and matrine (BtM). A comparison of DEGs across the three treatments (BtA, BtM, and BtAM) revealed two common DEGs. The results also revealed that AMPK signaling, apoptosis, and drug metabolism pathways are likely involved in whitefly defense responses against A. attenuatus and matrine infection. Furthermore, a notable suppression of general metabolism and immune response genes was observed in whiteflies treated with A. attenuatus + matrine (BtAM) compared to whiteflies treated with individual A. attenuatus (BtA) or matrine (BtM) treatments. CONCLUSION: Dynamic changes in the number of differentially expressed genes were observed in B. tabaci subjected to different treatments (BtA, BtM, and BtAM). To the best of our knowledge, this is the first report on the molecular interactions between whitefly and individual or combined treatments of A. attenuatus and matrine. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in the synergistic action of A. attenuatus and matrine against B. tabaci.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Matrinas , Perfilação da Expressão Gênica , Expressão Gênica
2.
Front Physiol ; 12: 671599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456741

RESUMO

Megalurothrips usitatus (Bagrall) is an important pest of legumes worldwide, causing great economic loss every year. Beauveria brongniartii and Akanthomyces attenuatus have shown considerable pathogenicity against M. usitatus in our previous studies. The medial lethal concentration (LC50) and the sublethal lethal concentration (LC25) of B. brongniartii isolate SB010 against M. usitatus were 8.38 × 105 and 1.73 × 105 conidia mL-1, respectively, whereas those of A. attenuatus isolate SCAUDCL-53 against M. usitatus were 4.37 × 105 and 2.97 × 104 conidia mL-1, respectively. This study reports the transcriptome-based explanation of the stress responses of M. usitatus following the application of B. brongniartii and A. attenuatus. The analysis of the transcriptomic data revealed the expression of 254, 207, 195, and 234 immunity-related unigenes by M. usitatus in response to B. brongniartii LC50 (SB1), B. brongniartii LC25 (SB2), A. attenuatus LC50 (V1), and A. attenuatus LC25 (V2), respectively. The biological function and metabolic pathway analyses showed that these unigenes were mainly related to pattern recognition receptors, information transduction factors, and reaction factors, such as scavenger receptor, cytochrome b5, cuticle protein, lysozyme, and serine protease.

3.
Insects ; 11(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036392

RESUMO

The oak lace bug (OLB), Corythucha arcuata (Hemiptera: Tingidae), was first identified as an invasive pest in Europe in northern Italy in 2000 and since then it has spread rapidly, attacking large forested areas in European countries. The OLB is a cell sap-sucking insect that is native to North America, with Quercus spp. as its main host. Its rapid expansion, successful establishment in invaded countries, and observations of more damage to hosts compared to native areas are most likely due to a lack of natural enemies, pathogens and competitors. In its native area, various natural enemies of OLBs have been identified; however, little is known about the occurrence and impact of OLB pathogens. None of the pathogenic fungi found on OLBs in natural conditions have been identified until now. In this study, we provide evidence of four entomopathogenic fungi that are naturally occurring on invasive OLBs found in infested pedunculate oak forests in eastern Croatia. On the basis of their morphology and multilocus molecular phylogeny, the fungi were identified as Beauveria pseudobassiana, Lecanicillium pissodis, Akanthomyces attenuatus and Samsoniella alboaurantium. The sequences generated for this study are available from GenBank under the accession numbers MT004817-MT004820, MT004833-MT004835, MT027501-MT27510, and MT001936-MT0011943. These pathogenic species could facilitate biological control strategies against OLBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa