Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(13): 17134-17143, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972382

RESUMO

The self-assembly mechanism of alternating AlN/TiN nano-lamellar structures in AlTiN coating is still a mystery, though this coating has been widely used in industry. Here, by using the phase-field crystal method, we studied the atomic-scale mechanisms of the formation of nano-lamellar structures during spinodal decomposition transformation of an AlTiN coating. The results show that the formation of a lamella is characterized by four distinct stages including the generation of dislocations (stage I), formation of islands (stage II), merging of islands (stage III), and flattening of lamellae (stage IV). The locally periodic fluctuation of the concentration along the lamella leads to the generation of periodically distributed misfit dislocations and then AlN/TiN islands, while the fluctuation of the composition in the direction normal to the lamella is responsible for the merging of islands and flattening of a lamella and more importantly the cooperative growth between neighboring lamellae. Moreover, we found that misfit dislocations play a crucial role in all the four stages, promoting the cooperative growth of TiN and AlN lamellae. Our results demonstrate that the TiN and AlN lamellae could be produced through the cooperative growth of AlN/TiN lamellae in spinodal decomposition of the AlTiN phase.

2.
Surf Coat Technol ; 206-318(11-12): 2954-2960, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23471551

RESUMO

Ti1 - xAlxN coatings are widely used for wear resistant applications due to their excellent mechanical and thermal properties, which depend to a great extent on the Al content. Here, we concentrate on a comparative study of the effect of Al content on crystal structure, thermal stability and oxidation resistance of Ti1 - xAlxN coatings. In agreement to earlier studies, thermal annealing of the individual cubic (c) and wurtzite (w) structured metastable Ti1 - xAlxN coatings induces decomposition into their stable phases c-TiN and w-AlN. The decomposition process for c-Ti1 - xAlxN involves an intermediate formation of cubic Al-rich and Ti-rich domains which results in a hardness increase to 34.7 and 34.4 GPa for x = 0.52 and 0.62 when annealed at 950 and 900 °C, respectively. In general, coatings with an Al content closer to the solubility limit, exhibit an earlier decomposition process, and hence an earlier peak-hardness. During exposure of the Ti1 - xAlxN coatings to ambient air at elevated temperatures Al2O3, TiO2 and Al2TiO5 are formed. The oxidation resistance of as-deposited single-phase Ti1 - xAlxN coatings, cubic or wurtzite structured, increases with increasing Al content. However, coatings containing Al contents at the metastable solubility limit, which result in a mixed cubic-wurtzite structure, have the worst oxidation resistance of the Al-containing coatings investigated. The single phase wurtzite structured coating w-Ti0.25Al0.75N shows the best oxidation resistance, with only ~0.7 µm oxide scale thickness, after thermal exposure for 20 h at 850 °C in ambient air.

3.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295226

RESUMO

In this paper, we analyze the possibilities of the protection of tools for wood machining with PVD (Physical Vapor Deposition) hard coatings. The nanolayered TiN/AlTiN coating, nanocomposite TiAlSiN coatings, and single layer TiN coating were analyzed in order to use them for protection of tools for wood machining. Both nanostructured coatings were deposited in an industrial magnetron sputtering system on the cutting blades made of sintered carbide WC-Co, while TiN single layer coating was deposited by evaporation using thermionic arc. In the case of TiN/AlTiN nanolayer coatings the thickness of the individual TiN and AlTiN layer was in the 5-10 nm range, depending on the substrate vertical position. The microstructure and chemical composition of coatings were studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) method. Additionally, in the case of the TiN/AlTiN coating, which was characterized by the best durability characteristics, the transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) methods were applied. The coatings adhesion to the substrate was analyzed by scratch test method combined with optical microscopy. Nano-hardness and durability tests were performed with uncoated and coated blades using chipboard. The best results durability characteristics were observed for TiN/AlTiN nanolayered coating. Performance tests of knives protected with TiN and TiAlSiN hard coatings did not show significantly better results compared to uncoated ones.

4.
Materials (Basel) ; 14(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671460

RESUMO

The lifetime and properties of cutting tools and forming moulds can be prolonged and enhanced by the deposition of hard, thin coatings. After a certain period of usage, the coating will deteriorate. Any remaining coating must be removed prior to successful recoating. Laser stripping is a fast and environmentally friendly coating removal method. In this paper, we present laser removal of two types of coatings deposited on a 1.2379 tool steel substrate, namely, an AlTiN coating with high hardness and a DLC C coating with a small coefficient of friction (COF). A powerful nanosecond laser was employed to remove the coating from the substrate with high efficiency, along with suitable residual surface roughness. Measurements were taken of surface roughness, removed depth, and working time on a stripped area of 1 cm2. The samples were evaluated under a microscope, with a 3D profilometer, and by EDS chemical analysis. Successful removal of the coating was confirmed by optical analysis, but detailed chemical characterisation showed that about 30% of the coating element may remain on the surface. Moreover, a working time of less than 7.5 s per cm2 was obtained in this study. In addition, it was shown that the application of a second low energy, high frequency laser beam pass leads to remelting of the peaks of the material and reduced surface roughness.

5.
Materials (Basel) ; 14(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067369

RESUMO

The influence of different types of cemented carbide blades and thickness of TiAlN/a-C:N and TiN/AlTiN protective coatings used in the wood industry on cutting performance has been studied. Three types of WC-Co cemented carbide blades with different cobalt content were used in the study. The thicknesses of both types of coatings were ~2 and ~5 µm. The structure, chemical and phase composition were studied using transmission and scanning electron microscopy (TEM, SEM), X-ray dispersion spectroscopy (EDX) and X-ray diffraction (XRD), respectively. The adhesion was evaluated by scratch test. Nanohardness and durability tests of uncoated and coated blades were performed. We found that the blades covered with 5 µm TiN/AlTiN coatings exhibited the best durability characteristic. The cutting distances were within the range ~6700-~7080 depending on the substrates in comparison with pure substrates (~4300-~4900) and 2 µm TiN/AlTiN coatings (~5400-~6600). The presence of a thin and soft outer a-C:N layer aggravates the nanohardness and durability of the coated blades.

6.
J Adv Res ; 8(4): 407-423, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28649459

RESUMO

Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa