Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Small ; 20(9): e2305796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857585

RESUMO

Although various types of bifacial solar cells exist, few studies have been conducted on bifacial semitransparent CuInSe2 solar cells (BS-CISe SCs) despite the attractive potential in power generation from both sides in an albedo environment. The optimized BS-CISe SCs with 300 and 800 nm-thick absorber via a streamlined single-stage co-evaporation process exhibit a power conversion efficiency (PCE) of 6.32% and 10.6%, respectively. When double-sided total 2.0 sun illumination is assumed in an albedo environment, the bifacial power generation densities (BPGD) of them increases to 9.41% and 13.9%. Four-terminal bifacial semitransparent tandem solar cells (4T-BST SCs) are fabricated to increase the BPGD by mechanically stacking a BS-perovskite (PVK) top cell on top of a BS-CISe bottom cell with the 300 and 800 nm-thick absorber layers. When summed up, the best top and bottom cell PCEs of the 4T-BST SC with 300 and 800 nm-thick BS-CISe SC are 18.8% and 21.1%, respectively. However, the practical BPGD values of the 4T-BST SC under total 2 sun illumination are interestingly 23.4% and 24.4%, respectively. This is because the BS-CISe bottom cell's thickness affects how much rear-side illumination is transmitted to the BS-PVK top cell, increasing its current density and BPGD.

2.
Glob Chang Biol ; 30(6): e17351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837306

RESUMO

The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.


La Terre fonctionne comme un système intégré­son habitabilité pour une vie complexe est une propriété émergente qui dépend des interactions entre les composantes biologiques, chimiques et physiques. Le réchauffement climatique affecte la structure et la fonction des écosystèmes, et en retour, la biosphère affecte également le climat en modifiant la composition des gaz atmosphériques et l'albédo planétaire. Il est essentiel de quantifier ces rétroactions entre les écosystèmes et le climat afin de prédire avec précision les changements futurs et élaborer des stratégies d'atténuation; cependant, l'interaction entre les processus écologiques complique l'évaluation de leurs impacts. Dans cet article, nous examinons l'état des connaissances sur la façon dont les processus écologiques et biologiques (par exemple, la concurrence, les interactions trophiques, le métabolisme, l'adaptation) affectent la directionnalité et l'ampleur des rétroactions entre les écosystèmes et le climat à l'aide d'exemples issus du monde aquatique. Nous soutenons que, malgré les nombreuses preuves de l'importance de plusieurs de ces rétroactions, notre compréhension limitée des effets additifs des processus écosystémiques empêche de faire une quantification robuste de la plupart des rétroactions climatiques d'origine écologique. Circonscrire ces effets doit être une priorité pour les sciences aquatiques, car ce n'est qu'en étudiant la biosphère en tant que sujet et arbitre du climat planétaire que nous pourrons développer une vision suffisamment holistique du système terrestre pour prédire avec précision l'avenir de la Terre et élucider son passé.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos/fisiologia
3.
Glob Chang Biol ; 30(2): e17195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389196

RESUMO

Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation.


Assuntos
Sequestro de Carbono , Mudança Climática , Florestas , Planetas , Temperatura , Água , Temperatura Baixa , Árvores
4.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375686

RESUMO

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Assuntos
Ecossistema , Pradaria , Plantas , Clima , Processos Climáticos , Biodiversidade
5.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257215

RESUMO

'Albedo bluing' of fruits occurs in many varieties of citrus, resulting in a significant reduction in their commercial value. We first presented a breakthrough method for successfully extracting and purifying the 'albedo bluing' substance (ABS) from citrus fruits, resulting in the attainment of highly purified ABS. Then, HPLC and UPLC-QTOF-MS were used to prove that ABS in the fruits of three citrus varieties (Citrus reticulate Blanco cv. 'Gonggan', 'Orah', and 'Mashuiju') are identical. However, the chemical structure of ABS remains elusive for many reasons. Fortunately, a more stable derivative of ABS (ABS-D) was successfully obtained. Through various analytical techniques such as HRESIMS, 1D and 2D NMR, and chemical shift calculation, ABS-D was identified as 2,4-dihydroxy-6-(ß-D-glucopyranosyloxy)phenyl(5,6-dihydroxy-7-(ß-D-glucopyranosyloxy)benzo[d]thiazol-2-yl)methanone, indicating that both ABS and its derivative belong to a rare category of benzothiazole glucosides. Furthermore, both ABS and ABS-D demonstrated potent antioxidant abilities. These findings lay the groundwork for further elucidating the chemical structure of ABS and the causative mechanism of the 'albedo bluing' phenomenon in citrus fruits.


Assuntos
Antioxidantes , Citrus , Benzotiazóis , Cromatografia Líquida de Alta Pressão , Glucosídeos
6.
Entropy (Basel) ; 26(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785599

RESUMO

In this work, satellite data from the Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are analyzed to determine how the global absorbed sunlight and global entropy production rates have changed from 2002 to 2023. The data is used to test hypotheses derived from the Maximum Power Principle (MPP) and Maximum Entropy Production Principle (MEP) about the evolution of Earth's surface and atmosphere. The results indicate that both the rate of absorbed sunlight and global entropy production have increased over the last 20 years, which is consistent with the predictions of both hypotheses. Given the acceptance of the MPP or MEP, some peripheral extensions and nuances are discussed.

7.
Glob Chang Biol ; 29(1): 110-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169920

RESUMO

Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.


Assuntos
Mudança Climática , Plantas , Temperatura
8.
J Environ Manage ; 344: 118623, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481915

RESUMO

Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO2 and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO2 emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO2 emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO2 and nitrogen compounds in the environment.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Carvão Vegetal/química , Carbono , Nitrogênio/análise , Meio Ambiente , Compostos de Nitrogênio , Sedimentos Geológicos/química , Solo
9.
Glob Chang Biol ; 28(1): 227-244, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651375

RESUMO

Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (-30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (-19%) and ecosystem (-7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.


Assuntos
Ecossistema , Clima Tropical , Teorema de Bayes , Ciclo do Carbono , Florestas
10.
Geophys Res Lett ; 49(11): e2022GL098102, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859851

RESUMO

This study employs a fully coupled meteorology-chemistry-snow model to investigate the impacts of light-absorbing particles (LAPs) on snow darkening in the Sierra Nevada. After comprehensive evaluation with spatially and temporally complete satellite retrievals, the model shows that LAPs in snow reduce snow albedo by 0.013 (0-0.045) in the Sierra Nevada during the ablation season (April-July), producing a midday mean radiative forcing of 4.5 W m-2 which increases to 15-22 W m-2 in July. LAPs in snow accelerate snow aging processes and reduce snow cover fraction, which doubles the albedo change and radiative forcing caused by LAPs. The impurity-induced snow darkening effects decrease snow water equivalent and snow depth by 20 and 70 mm in June in the Sierra Nevada bighorn sheep habitat. The earlier snowmelt reduces root-zone soil water content by 20%, deteriorating the forage productivity and playing a negative role in the survival of bighorn sheep.

11.
Environ Res ; 208: 112670, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021066

RESUMO

Previous studies have indicated that black carbon (BC) potentially induces snow albedo reductions across northern China. However, the effects of other light-absorbing particles (LAPs, e.g., mineral dust, MD), snow grain shape, or BC-snow mixing state on snow albedo have been largely ignored. Here we evaluate the BC- and MD-induced snow albedo reductions and radiative forcings (RFs) using an updated Snow, Ice, and Aerosol Radiation radiative transfer model, considering all of the potential factors that can be derived from the field observations across northern China. The results highlight that the LAP-induced albedo reductions for nonspherical snow grains are 2%-30% less than those for spherical grains. Furthermore, BC-snow internal mixing can significantly enhance albedo reduction by a factor of 1.42-1.48 relative to external mixing, with snow grain radius ranging from 100 to 1000 µm. The mean regional BC + MD-induced snow albedo reductions are amplified by the increase of snow grain radius, ranging from 0.012 to 0.123 for fresh snow to 0.016-0.227 for old snow. Finally, we discuss the relative contributions of BC and MD to the albedo reductions and RFs, highlighting the dominant role of BC in reducing snow albedo across northern China.


Assuntos
Monitoramento Ambiental , Neve , Carbono/análise , China , Poeira/análise , Minerais
12.
Environ Res ; 214(Pt 1): 113756, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35777435

RESUMO

Glaciers in Chilean Central Andes have significatively retreated, at least, in the last 60 years. From 2004 to 2014, the largest retreat in the area (-0.15 km2 yr-1) was observed at Olivares Alpha Glacier (OAG). Previous glacier fluctuation studies proposed that two open-pit mines distant 7 km from the glacier could be the cause of its enhanced retreat. However, this had not been yet tested due to the lack of measured data. Here, we investigated the impact that major air pollutants emitted by local mining activities could have on the differences observed in OAG glacial retreat compared with a glacier of similar size and altitude with no nearby anthropogenic sources: Bello Glacier (BG), which has a reported lower retreat (-0.02 km2 yr-1). Results revealed a link between anthropogenic air pollutants and glacial retreat rates, meaning that glacial retreat is decoupled from climatic and glaciological factors. Considering that both glaciers are located in the same climatic setting, the anthropogenic air pollutants deposited onto the OAG surface appear to be forcing positive feedback in which the pollutants deposition best explain the differences in the glacier retreat. With the results of this study, it has been calculated that the impact of mining in OAG could be responsible for 82% of its total retreat since between 2004 and 2014, and only the remaining 18% would correspond to the impact of climate change.


Assuntos
Poluentes Atmosféricos , Camada de Gelo , Chile , Mudança Climática , Mineração
13.
Atmos Environ (1994) ; 287: 119270, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35818429

RESUMO

The synergistic response of urban atmospheric aerosols and ozone (O3) to reduction of anthropogenic emissions is complicated and still needs further study. Thus, the changes in physical and chemical properties of urban atmospheric aerosols and O3 during the Coronavirus Disease 2019 (COVID-19) lockdown were investigated at three urban sites and one rural site in Lanzhou with semi-arid climate. Fine particulate matter (PM2.5) decreased at four sites by âˆ¼ 20% while O3 increased by >100% at two urban sites during the COVID-19 lockdown. Both primary emissions and secondary formation of PM2.5 decreased during the lockdown. Significant increase in both sulfur and nitrogen oxidation ratios was found in the afternoon, which accounted for 48.7% of the total sulfate and 40.4% of the total nitrate, respectively. The positive matrix factorization source apportionment revealed increased contribution of secondary formation and decreased contribution of vehicle emissions. Aerosol scattering and absorption decreased by 33.6% and 45.3%, resulting in an increase in visibility by 30% and single scattering albedo (SSA) at 520 nm slightly increased by 0.02. The enhanced O3 production was explained by increased volatile organic compounds to nitrogen oxides ratio, decreased aerosol, as well as increased SSA. The primary emissions of secondary aerosol precursors significantly decreased while Ox (i.e., NO2 and O3) exhibited little change. Consequently, Ox to CO ratio, PM2.5 to elemental carbon (EC) ratio, secondary inorganic aerosols to EC ratio, and secondary organic carbon to EC ratio increased, confirming enhanced secondary aerosol production efficiency during the lockdown. Positive feedback among O3 concentration, secondary aerosol formation, and SSA was revealed to further promote O3 production and secondary aerosol formation. These results provide scientific guidance for collaborative management of O3 and particulate matter pollution for cities with semi-arid climate.

14.
Proc Natl Acad Sci U S A ; 116(48): 23947-23953, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712425

RESUMO

The Arctic has warmed significantly since the early 1980s and much of this warming can be attributed to the surface albedo feedback. In this study, satellite observations reveal a 1.25 to 1.51% per decade absolute reduction in the Arctic mean surface albedo in spring and summer during 1982 to 2014. Results from a global model and reanalysis data are used to unravel the causes of this albedo reduction. We find that reductions of terrestrial snow cover, snow cover fraction over sea ice, and sea ice extent appear to contribute equally to the Arctic albedo decline. We show that the decrease in snow cover fraction is primarily driven by the increase in surface air temperature, followed by declining snowfall. Although the total precipitation has increased as the Arctic warms, Arctic snowfall is reduced substantially in all analyzed data sets. Light-absorbing soot in snow has been decreasing in past decades over the Arctic, indicating that soot heating has not been the driver of changes in the Arctic snow cover, ice cover, and surface albedo since the 1980s.

15.
Int J Biometeorol ; 66(3): 591-600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988681

RESUMO

Pigments are known to modify the spectral properties of foliage, which in turn affect the amount of radiant energy stored by the plant canopy. Studies have shown that red pigments (anthocyanin) increase leaf absorptivity of solar radiation, but little is known about their effect on canopy net radiation and temperature. We hypothesized that increased absorptivity of solar radiation caused by red pigments would result in higher canopy temperature when compared to that of a green canopy. To better understand the role of red pigments on canopy net radiation and temperature, we conducted a study where we measured leaf spectral properties, canopy spectral reflectivity, stomatal conductance, net radiation, and leaf and canopy temperature of red and green cotton (Gossypium hirsutum L.) canopies. On average, albedo of the red canopy was 0.02 lower than that of the green canopy, and most of the differences in reflected solar irradiance were in near-infrared wavelengths. Red canopy had greater net radiation than the green canopy throughout the measurement period, and that was due to its lower albedo. Red canopy was about 1 °C warmer than the green canopy on average; however, computer simulation indicates that albedo was of secondary importance in controlling canopy temperature. Contrary to our hypothesis, results suggest that lower stomatal conductance in the red leaves was the main driver of canopy temperature differences between red and green canopies.


Assuntos
Gossypium , Folhas de Planta , Simulação por Computador , Folhas de Planta/efeitos da radiação , Luz Solar , Temperatura
16.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080952

RESUMO

Obtaining surface albedo data with high spatial and temporal resolution is essential for measuring the factors, effects, and change mechanisms of regional land-atmosphere interactions in deserts. In order to obtain surface albedo data with higher accuracy and better applicability in deserts, we used MODIS and OLI as data sources, and calculated the daily surface albedo data, with a spatial resolution of 30 m, of Guaizi Lake at the northern edge of the Badain Jaran Desert in 2016, using the Spatial and Temporal Non-Local Filter-based Fusion Model (STNLFFM) and topographical correction model (C model). We then compared the results of STNLFFM and C + STNLFFM for fusion accuracy, and for spatial and temporal distribution differences in surface albedo over different underlying surfaces. The results indicated that, compared with STNLFFM surface albedo and MODIS surface albedo, the relative error of C + STNLFFM surface albedo decreased by 2.34% and 3.57%, respectively. C + STNLFFM can improve poor applicability of MODIS in winter, and better responds to the changes in the measured value over a short time range. After the correction of the C model, the spatial difference in surface albedo over different underlying surfaces was enhanced, and the spatial differences in surface albedo between shifting dunes and semi-shifting dunes, fixed dunes and saline-alkali land, and the Gobi and saline-alkali land were significant. C + STNLFFM maintained the spatial and temporal distribution characteristics of STNLFFM surface albedo, but the increase in regional aerosol concentration and thickness caused by frequent dust storms weakened the spatial difference in surface albedo over different underlying surfaces in March, which led to the overcorrection of the C model.

17.
J Environ Manage ; 302(Pt A): 113938, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688049

RESUMO

It is generally accepted that land use and land management practices impact climate change through sequestration of carbon in soils, but modulation of surface energy budget can also be important. Using Landsat data to characterize cropland albedos in Canada's three prairie soil zones, this study estimates the atmospheric carbon equivalent drawdown of albedo radiative forcing for three management practices: 1) moving from conventional tillage to no-till, 2) eliminating summer fallow in crop rotations, and 3) growing crops with higher albedos. In a 50-year time horizon, conversion from conventional tillage to no-till results in a total equivalent atmospheric CO2 (CO2-eq) drawdown of 1.0-1.5 kg m-2, and conversion from summer fallow to crops results in CO2-eq drawdown of 1.1-2.4 kg m-2. Conversion of summer fallow to crops results in different magnitudes of CO2-eq drawdown depending on specific crops. Lentils, peas, and canola have relatively higher albedo than that of spring wheat and flax; hence, a larger magnitude of CO2-eq drawdown results when they replace summer fallow in the rotation. For the management changes from 1990 to 2019 for the whole Canadian Prairies, albedo changes induced a CO2-eq drawdown of about 179.3 ± 20.9 Tg due to increased area of no-till, and 101.6 ± 9.5 Tg due to reduced area under fallow. The study shows that the magnitudes of CO2-eq drawdown due to albedo change are comparable to that due to soil carbon sequestration. Therefore, it is important to account for cropland albedo changes in assessing the potential of agricultural management practices to mitigate climate change.


Assuntos
Carbono , Pradaria , Agricultura , Canadá , Carbono/análise , Mudança Climática , Solo
18.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557896

RESUMO

This study aimed to develop a method of naringinase biosynthesis by Aspergillus niger KMS on an optimized culture medium. The concentration of the six medium components in shake flasks was optimized by the Box and Wilson factor gradient method. Naringinase's substrate, naringin, powdered albedo, flavedo, and red grapefruit segment membranes were used to stimulate naringinase biosynthesis. Rhamnose was chosen as the carbon source, while the nitrogen source was yeast extract and sodium nitrate. Naringinase biosynthesis was most favorable in the culture medium with the following composition (g 100 mL): 3.332-NaNO3; 3.427-yeast extract; 0.184-KH2PO4; 0.855-red grapefruit albedo; 0.168-naringin; 2.789-rhamnose. The obtained Aspergillus niger KMS culture fluid was concentrated, thereby precipitating the protein. As a result, a naringinase preparation with high activity, equal to 816 µmol × min-1 × g-1, was obtained.


Assuntos
Aspergillus niger , Citrus paradisi , Aspergillus niger/metabolismo , Ramnose/metabolismo
19.
Environ Monit Assess ; 194(12): 924, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36260142

RESUMO

Aerosols are a crucial part of the climate system. Numerous factors, including aerosols, govern Earth's radiation balance. Different aerosols have distinct radiational effects on the earth system, and thus the slight change in their composition may lead to a drastic change in their radiative effects. Aerosols' chemical and physical properties also depend on generation processes, generation source, and geographical location. Significant spatio-temporal inconsistency is noticed in the distribution of aerosols. It makes it much difficult task to assess their radiative properties. We attempted to explore aerosol's optical properties and wavelength dependence over different locations. We have used AERONET (Aerosol Robotic Network) data over various stations (Kanpur, Jaipur, Gandhi College, Pune) with varying terrain properties in the Indian continent. We have studied the variation of different optical parameters: aerosol optical depth (AOD), single scattering albedo (SSA), and Angstrom exponent (α), and their wavelength dependence. This study indicated that Jaipur is the cleanest site, with dust aerosols as a primary aerosol. Though over Pune also aerosol concentration was relatively low but the anthropogenic aerosols contributed primarily over this site. Over the Indo-Gangetic Plain (IGP) sites, dust aerosols dominated the pre-monsoon season, while anthropogenic aerosols dominated the post-monsoon and winter seasons. The scatter plot of AOD with α gives the details of different aerosols (desert dust, continental aerosols, mixed aerosol, biomass burning aerosols, and sulfate aerosols) in the different seasons and places. This study provides an overview of aerosol properties, dominant aerosols in the aerosol system, and their seasonal and spectral variation.


Assuntos
Poluentes Atmosféricos , Atmosfera , Humanos , Atmosfera/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Índia , Aerossóis/análise , Poeira/análise , Sulfatos
20.
J Food Sci Technol ; 59(4): 1478-1486, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250071

RESUMO

The aim of this study was to determine the physicochemical (pH, water activity, titratable acidity, moisture, protein, fat, colour, weight loss and oxidative stability), textural and sensory properties, and the growth of lactic acid bacteria in fermented sausages (sucuk) supplemented with different levels (0, 1, 2.5 and 5.0%) of pre-treated bitter orange (Citrus aurantium) albedo. Results indicated that adding albedo to sucuk samples increased (P < 0.01) the titratable acidity, lightness and yellowness values; while it led to a decrease (P < 0.01) in pH and weight loss values. Moreover, it was observed that there were increases (P < 0.05) in Thiobarbituric acid (TBA) values when albedo was added to the samples. The highest lactic acid bacteria count was observed in the sucuk samples supplemented with 5% albedo. Regarding textural properties, albedo addition increased (P < 0.01) hardness, springiness, gumminess and chewiness values. Lastly, sensory analysis results showed that albedo added sucuk samples generally got higher (P < 0.05) scores from panellists compared to control samples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa