RESUMO
In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.
Assuntos
Carbono , Saccharum , Carbono/análise , Solo/química , Celulose , Carvão Vegetal/química , Nutrientes , ÍndiaRESUMO
A controlled in-vitro experiment was conducted to determine the bioaccessibility of extrinsic soil iron in pearl millet contaminated with typical Malawian soils. Pearl millet was contaminated with soils at ratios typically encountered in real life. Iron concentrations of soil-contaminated flour increased such that soil-derived iron contributed 56, 83 and 91% of the total iron when the proportions of soil were 0.1, 0.5 and 1% (soil: grain w/w), respectively. When soils were digested alone, the concentration of bioaccessible iron differed depending on the type of soil. However, the concentration of bioaccessible iron in soil-contaminated flours did not exceed that of uncontaminated flour and there was no effect of soil type. This suggests that knowledge of the proportion of extrinsic soil iron in soil-contaminated grains would be useful for iron bioavailability estimations. Vanadium is a reliable indicator of the presence of extrinsic soil iron in grains and has potential applications in this regard.
Assuntos
Pennisetum , Poluentes do Solo , Farinha/análise , Ferro/análise , Solo , Vanádio , Poluentes do Solo/análiseRESUMO
Soil erosion is a serious challenge for sustainable crop production. Alfisols in Nigeria are easily prone to soil degradations which have significantly reduced soil productivity, crop yield and increased cost of production. The use of soil conservation measures are vital interventions for sustainable crop production against the effects of erosion. The impacts of soil conservation on erodibility of an Alfisol was investigated in a tropical alfisol in Southwestern Nigeria. The study utilized four-soil conservation measures - Irvingia wombulu, Irvingia garbonensis, paddock and Cynodon plectostachyus was established on 20.4 ha land for 25 years, and replicated thrice based on land area. Empirical soil erodibility factor using Universal Soil Loss Equation (USLE) and Water Erosion Prediction Project (WEPP) erodibility factor models was determined. Analysis of variance analysis was done using R statistics to ascertain response patterns of the soil conservation measures to erodibility. Correlation was conducted for the conformity and relationship between erodibility models and soil properties. I. garbonensis soil conservation measure gave the least erodibility factor (K = 0.07), among paddock (K = 0.09), I. wombulu (K = 0.11) and C. plectostachyus with the highest erodibility factor (K = 0.17), indicating that I. garbonensis has the highest potential for soil conservation. Soil conservation measures significantly (p ≤ 0.05) influenced soil properties. Wischmeier and Mannering's USLE erodibility and WEPP's rill and inter-rill erodibility were not significantly (p ≥ 0.05) different across the soil conservation measures. Elswaify and Dangler's USLE erodibility correlated best with Wischmeier and Mannering USLE erodibility (r = 1.00) and WEPP's rill (r = 0.8) and inter-rill (r = 0.8) erodibility. Sand, silt, organic carbon, available phosphorus and aggregate stability significantly (p ≤ 0.05) correlated with USLE erodibility factor. Elswaify and Dangler USLE erodibility gave higher precision in erodibility determination of the soils. I. garbonensis was more efficient in reducing soil erosion, indicating that it is the best soil conservation measure for sustainable agriculture in alfisols in the tropics.
RESUMO
Low soil pH and aluminum (Al) toxicity induced by soil acidification are the main obstacles in many regions of the world for crop production. The purpose of this study was to reveal the mechanisms on how the properties of the soils derived from different parent materials play role on the determination of critical soil pH and Al concentration for soybean crops. A set of soybean pot experiment was executed in greenhouse with a soil pH gradient as treatment for each of four soils to fulfill the objectives of this study. The results indicated that plant growth parameters were affected adversely due to Al toxicity at low soil pH level in all soils. The critical soil pH varied with soil type and parent materials. They were 4.38, 4.63, 4.74, and 4.95 in the Alfisol derived from loss deposit, and the Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. The critical soil exchangeable Al was 2.42, 1.82, 1.55, and 1.44 cmolc/kg for the corresponding soils. At 90% yield level, the critical Al saturation was 6.94, 10.36, 17.79, and 22.75% for the corresponding soils. The lower critical soil pH and Al saturation, and higher soil exchangeable Al were mainly due to greater soil CEC and exchangeable base cations. Therefore, we recommended that critical soil pH, soil exchangeable Al, and Al saturation should be considered during judicious liming approach for soybean production.
Assuntos
Alumínio/análise , Glycine max/química , Poluentes do Solo/análise , Solo/química , Alumínio/toxicidade , Compostos de Cálcio/química , Cátions/química , Concentração de Íons de Hidrogênio , Óxidos/química , Poluentes do Solo/toxicidade , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimentoRESUMO
The microbial dynamics expressed in terms of culturable microbial populations i.e. bacteria, fungi, actinomycetes and Azotobacter were measured after 33 years of continuous application of mineral fertilizers and amendments to an acid alfisol. The bacterial, fungal and Azotobacter populations were maximum in plots treated with mineral fertilizers and FYM (100%NPK+FYM) while actinomycetes population was maximum in mineral fertilizes and lime treated plots (100%NPK+Lime). The bacterial population decreased and fungal population increased with increasing levels of NPK i.e. from 50% to 150%NPK. Bacillus species of bacteria and Gliocladium, Aspergillus and Rhizopus species of fungi were the main dominating culturable microorganisms in all the treatments. The FYM and lime amended plots sustained crop productivity and microbial populations at higher levels than rest of the mineral fertilizer treatments. The nitrogenous fertilizers alone had the most deleterious effect on crop productivity and the biological soil environment.
RESUMO
The aim of this study was to elucidate the heterogeneous structural and functional composition of humic acids (HAs) and dissolved organic matter (DOM) isolated from two Alfisol profiles with different soil texture, in order to develop a better understanding of the organic matter dynamics. Soil samples were collected at different depths from three (Ap, 2AB and 2Bt) and eight (A1, A2, A3, E1, E2, 2Bt1, 2Bt2 and 2Bt3) soil horizons of two Alfisols located in the south (PR1) and north (PR2) of Italy, with a clay texture and a silt loam to loam ones, respectively. Chemical and spectroscopic methods were used to characterize the HAs and the DOM isolated from different soil horizons, including Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR), and Fluorescence spectroscopies. The HAs and the DOM isolated from the two Alfisols apparently showed significant differences in their compositional, structural and functional characteristics. In particular, the HAs isolated from the PR1 featured a higher degree of humification and molecular complexity with respect to those isolated from the PR2. On the contrary, the DOM samples isolated from the PR2 showed a more marked aromatic character and polycondensation degree. Both the HAs and the DOM obtained from the PR1 presented a greater qualitative homogeneity with respect to those obtained from the PR2. These results could be reasonably ascribed to the different texture and horizons of the two Alfisols, and to a greater pedogenesis occurred in the PR1.