Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 308: 114507, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124315

RESUMO

The treatment of acid mine drainage (AMD) is of paramount importance for environmental sustainability. A two-stage process involving AMD remediation and simultaneous lipid production represents a highly efficient approach with zero-waste generation. Alkaline (NaOH) treatment of AMD at pH 8.0, 10.0, and 12.0 had significantly reduced metal loads (copper (Cu), cobalt (Co), chromium (Cr), cadmium (Cd), nickel (Ni), and zinc (Zn)) compared to the acidic pH range (4.0 and 6.0). The concentration levels of sulfates (SO4 = 4520 mg/L), iron (Fe = 788 mg/L), aluminum (Al = 310 mg/L), and manganese (Mn = 19.4) were reduced to 2971 mg/L, 10.3 mg/L, 16.4 mg/L, and 1.3 mg/L, respectively at pH value 8.0. AMD with a pH value of 8.0 was later chosen as an ideal medium to favor the lipid accumulation by Chlorella vulgaris. Algal biomass was increasing to 5.5 g/L from 0.6 g/L of AMD-based medium within 15 days of cultivation. The FTIR and SEM-EDS studies revealed significant morphological changes in the microbial cell wall. The metals might positively impact lipid production in microalgae, where lipid yield achieved 0.18 g/g of glucose with lipid content of 0.35 g/g of biomass. The fatty acid profile presented 53.4% of saturated fatty acid content with a cetane value of 60.7. Thus, the efficiency of C. vulgaris was demonstrated with AMD treatment proving it to be a good candidate for bioenergy production.


Assuntos
Chlorella vulgaris , Metais Pesados , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Lipídeos , Mineração , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 177: 202-12, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27100332

RESUMO

The complete reduction of highly concentrated contaminants in piggery waste was achieved with an innovative process scheme consecutively combining autothermal thermophilic aerobic digestion (ATAD), an expanded granular sludge bed (EGSB) and a microalgal-bacterial symbiotic vertical photobioreactor (VPBR), followed by biomass recycling for effluent polishing. Contaminants in piggery waste, such as high organic and inorganic matter, total nitrogen (TN), and total phosphorus (TP) contents, were successfully reduced in the newly implemented system. The concentrations of volatile solids (VS) and the chemical oxygen demand (COD) for organic matter in the feed were reduced by approximately 99.3% and 99.7%, respectively, in the innovative system. The overall reduction efficiencies in TN, ammoniacal nitrogen, and TP were 98.8, 98.4, and 93.5%, respectively, through ammonia gas emission, coagulated sludge disposal, and the algal-bacterial symbiotic polishing process. Fecal coliform density was decreased to <1.7 × 10(4) CFU g(-1) total solids. Biogas and CH4 in the EGSB were generated in the range of 0.36-0.79 and 0.18-0.44 L g(-1) [VS removed], respectively, and contained 245 ± 19 ppm (v/v) [H2S].


Assuntos
Fotobiorreatores , Suínos , Gerenciamento de Resíduos/métodos , Amônia/análise , Amônia/química , Amônia/metabolismo , Animais , Bactérias/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Microalgas/metabolismo , Microalgas/fisiologia , Nitrogênio/análise , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/química , Fósforo/metabolismo , Esgotos/química , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa