Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 71(2): 195-206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597725

RESUMO

Extreme heat caused by climate change is increasing the transmission of infectious diseases, resulting in a sharp rise in heat-related illness and mortality. Understanding the mechanistic link between heat, inflammation, and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis, is crucial in febrile seizures and convulsions induced by heat stress in humans. Here, we address what causes thermal hyperpnea in neonates and how it is affected by inflammation. Transient receptor potential cation channel subfamily V member 1 (TRPV1), a heat-activated channel, is sensitized by inflammation and modulates breathing and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures, we treated neonatal rats with bacterial LPS, and breathing, arterial pH, in vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. LPS-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). LPS exposure also elevated vagal spiking and intracellular calcium concentrations in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the LPS-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons.


Assuntos
Inflamação , Convulsões Febris , Canais de Cátion TRPV , Convulsões Febris/fisiopatologia , Convulsões Febris/metabolismo , Animais , Canais de Cátion TRPV/metabolismo , Inflamação/metabolismo , Ratos , Resposta ao Choque Térmico , Animais Recém-Nascidos , Lipopolissacarídeos/farmacologia , Nervo Vago/fisiopatologia , Ratos Sprague-Dawley , Alcalose Respiratória/metabolismo , Alcalose Respiratória/fisiopatologia , Hipertermia/metabolismo , Hipertermia/fisiopatologia
2.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223928

RESUMO

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Assuntos
Cloretos , Diarreia , Humanos , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/genética , Ânions , Enterócitos , Concentração de Íons de Hidrogênio , Transportadores de Sulfato/genética , Antiportadores de Cloreto-Bicarbonato/genética
3.
Pflugers Arch ; 476(4): 555-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195948

RESUMO

The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and ß-intercalated cells accomplish urinary base (HCO3-) secretion. ß-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of ß-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.


Assuntos
Túbulos Renais Coletores , Animais , Camundongos , Antiportadores de Cloreto-Bicarbonato/metabolismo , Rim/metabolismo , Túbulos Renais Coletores/metabolismo
4.
Ann Pharmacother ; 58(1): 65-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37125739

RESUMO

OBJECTIVE: The objective of this review is to discuss acid-base physiology, describe the essential steps for interpreting an arterial blood gas and relevant laboratory tests, and review the 4 distinct types of acid-base disorders. DATA SOURCES: A comprehensive literature search and resultant bibliography review of PubMed from inception through March 7, 2023. STUDY SELECTION AND DATA EXTRACTION: Relevant English-language articles were extracted and evaluated. DATA SYNTHESIS: Critically ill patients are prone to significant acid-base disorders that can adversely affect clinical outcomes. Assessing these acid-base abnormalities can be complex because of dynamic aberrations in plasma proteins, electrolytes, extracellular volume, concomitant therapies, and use of mechanical ventilation. This article provides a systematic approach to acid-base abnormalities which is necessary to facilitate prompt identification of acid-base disturbances and prevent untoward morbidity and mortality. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Many acid-base disorders result from medication therapy or are treated with medications. Pharmacists are uniquely poised as the medication experts on the multidisciplinary team to assist with acid-base assessments in the context of pharmacotherapy. CONCLUSION: The use of a systematic approach to address acid-base disorders can be performed by all pharmacists to improve pharmacotherapy and optimize patient outcomes.


Assuntos
Desequilíbrio Ácido-Base , Estado Terminal , Humanos , Estado Terminal/terapia , Respiração Artificial , Cuidados Críticos , Farmacêuticos , Desequilíbrio Ácido-Base/diagnóstico , Desequilíbrio Ácido-Base/terapia
5.
Clin Exp Nephrol ; 28(8): 803-810, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478191

RESUMO

BACKGROUND: This study aimed to analyze genotype-phenotype correlations in children with Gitelman syndrome (GS). METHODS: This multicenter retrospective study included 50 Korean children diagnosed with SLC12A3 variants in one or both alleles and the typical laboratory findings of GS. Genetic testing was performed using the Sanger sequencing except for one patient. RESULTS: The median age at the diagnosis was 10.5 years (interquartile range, 6.8;14.1), and 41 patients were followed up for a median duration of 5.4 years (interquartile range, 4.1;9.6). A total of 30 different SLC12A3 variants were identified. Of the patients, 34 (68%) had biallelic variants, and 16 (32%) had monoallelic variants on examination. Among the patients with biallelic variants, those (n = 12) with the truncating variants in one or both alleles had lower serum chloride levels (92.2 ± 3.2 vs. 96.5 ± 3.8 mMol/L, P = 0.002) at onset, as well as lower serum potassium levels (3.0 ± 0.4 vs. 3.4 ± 0.3 mMol/L, P = 0.016), and lower serum chloride levels (96.1 ± 1.9 vs. 98.3 ± 3.0 mMol/L, P = 0.049) during follow-up than those without truncating variants (n = 22). Patients with monoallelic variants on examination showed similar phenotypes and treatment responsiveness to those with biallelic variants. CONCLUSIONS: Patients with GS who had truncating variants in one or both alleles had more severe electrolyte abnormalities than those without truncating variants. Patients with GS who had monoallelic SLC12A3 variants on examination had almost the same phenotypes, response to treatment, and long-term prognosis as those with biallelic variants.


Assuntos
Estudos de Associação Genética , Síndrome de Gitelman , Membro 3 da Família 12 de Carreador de Soluto , Humanos , Síndrome de Gitelman/genética , Síndrome de Gitelman/diagnóstico , Membro 3 da Família 12 de Carreador de Soluto/genética , Criança , Masculino , Estudos Retrospectivos , Feminino , Adolescente , Fenótipo , República da Coreia , Pré-Escolar , Mutação , Potássio/sangue , Predisposição Genética para Doença , Cloretos/sangue
6.
Eur J Appl Physiol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844672

RESUMO

PURPOSE: The aim of this study was to determine how sodium hydrogen carbonate (NaHCO3) ingestion during a 1-h recovery period after a 200-m front-crawl swim affects blood-gas levels, acid-base balance, and performance during a successive trial. METHODS: Fourteen national-level male swimmers (age: 21 ± 3 years, body mass (BM):77 ± 10 kg, stature: 181 ± 7 cm) performed four maximal 200-m front-crawl tests. On one of the two days, the swimmers swam two 200-m tests with a 1-h recovery break, during which they drank water (WATER); on the other day, they performed the same protocol but consumed 0.3 g min-1 NaHCO3 solution during the recovery break (NaHCO3). RESULTS: The ingestion of NaHCO3 before the second test had no effect on swim time despite a greater [ HCO 3 - ] (19.2 ± 2.3 mmol L-1) than that measured during the first test (NaHCO3) (14.5 ± 1.1 mmol L-1) and the other two tests (WATER) (12.7 ± 2.4 and 14.8 ± 1.5 mmol L-1; F = 18.554; p = 0.000) and a higher blood pH (7.46 ± 0.03) than that measured during the first test (NaHCO3) (7.39 ± 0.02) and the other two tests (WATER) (7.16 ± 0.04 and 7.20 ± 0.05); (F = 5.255; p = 0.004). An increase in blood pCO2 (0.2 ± 0.3 kPa) between both tests (NaHCO3) compared to unchanged pCO2 values (- 0.1 ± 0.3 kPa) between the other two tests (WATER) (t = - 2.984; p = 0.011; power = 0.741) was confirmed. CONCLUSIONS: NaHCO3 ingestion during the recovery period between two 200-m front-crawl time trials had a strong buffering effect that did not positively affect performance. An increase in pCO2 may have counterbalanced this impact.

7.
Eur J Appl Physiol ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068627

RESUMO

INTRODUCTION: Sodium bicarbonate (NaHCO3) ingestion has been found to be ergogenic in high-intensity exercise that ranges from 1 to 10 min; however, limited studies have investigated high-intensity exercise beyond this duration. PURPOSE: The present study aimed to determine the effect of NaHCO3 ingested using a carbohydrate hydrogel delivery system on 40 km time trial (TT) performance in trained male cyclists. METHODS: Fourteen trained male cyclists ingested 0.3 g kg-1 BM NaHCO3 (Maurten AB, Sweden) to determine individualised peak alkalosis, which established time of ingestion prior to exercise. Participants completed a 40 km familiarisation TT, and two 40 km experimental TTs after ingestion of either NaHCO3 or placebo in a randomised, double-blind, crossover design. RESULTS: NaHCO3 supplementation improved performance (mean improvement = 54.14 s ± 18.16 s; p = 0.002, g = 0.22) and increased blood buffering capacity prior to (HCO3- mean increase = 5.6 ± 0.2 mmol L-1, p < 0.001) and throughout exercise (f = 84.82, p < 0.001, pη2 = 0.87) compared to placebo. There were no differences in total gastrointestinal symptoms (GIS) between conditions either pre- (NaHCO3, 22 AU; Placebo, 44 AU; p = 0.088, r = 0.46) or post-exercise (NaHCO3, 76 AU; Placebo, 63 AU; p = 0.606, r = 0.14). CONCLUSION: The present study suggests that ingesting NaHCO3 mini-tablets in a carbohydrate hydrogel can enhance 40 km TT performance in trained male cyclists, with minimal GIS. This ingestion strategy could therefore be considered by cyclists looking for a performance enhancing ergogenic aid.

8.
BMC Pediatr ; 24(1): 305, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704545

RESUMO

INTRODUCTION: Congenital chloride diarrhoea (CCD) is an autosomal recessive condition that causes secretory diarrhoea and potentially deadly electrolyte imbalances in infants because of solute carrier family 26 member 3 (SLC26A3) gene mutations. CASE PRESENTATION: A 7-month-old Chinese infant with a history of maternal polyhydramnios presented with frequent watery diarrhoea, severe dehydration, hypokalaemia, hyponatraemia, failure to thrive, metabolic alkalosis, hyperreninaemia, and hyperaldosteronaemia. Genetic testing revealed a compound heterozygous SLC26A3 gene mutation in this patient (c.269_270dup and c.2006 C > A). Therapy was administered in the form of oral sodium and potassium chloride supplements, which decreased stool frequency. CONCLUSIONS: CCD should be considered when an infant presents with prolonged diarrhoea during infancy, particularly in the context of maternal polyhydramnios and dilated foetal bowel loops.


Assuntos
Diarreia , Erros Inatos do Metabolismo , Mutação , Transportadores de Sulfato , Feminino , Humanos , Lactente , Masculino , Antiportadores de Cloreto-Bicarbonato/genética , Diarreia/congênito , Diarreia/genética , População do Leste Asiático , Heterozigoto , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/diagnóstico , Poli-Hidrâmnios/genética , Cloreto de Potássio/uso terapêutico , Cloreto de Potássio/administração & dosagem , Transportadores de Sulfato/genética
9.
J Emerg Med ; 66(1): e33-e37, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867035

RESUMO

BACKGROUND: Metabolic alkalosis is an uncommon clinical entity resulting from a wide variety of underlying etiologies including gastrointestinal, renal, endocrine, and metabolic causes. It is a typically clinically silent condition; however, severe cases can be life-threatening, mandating both a systematic investigative approach and an early aggressive management strategy. CASE REPORT: We present a case of a 58-year-old man with severe, multifactorial metabolic alkalosis (pH 7.72, HCO3- 42 mmol/L, pCO2 31 mm Hg) resulting from refractory vomiting, severe hypokalemia (2.0 mmol/L), and hypoalbuminemia (albumin 20 g/L). WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Severe metabolic alkalosis is associated with significant morbidity and mortality. Clinicians need to be aware of the potential underlying causes in these cases, as well as how to delineate between chloride- and non-chloride-depleted states, which dictates initial treatment. We provide a pragmatic summary of the evaluation, pertinent investigations, and early management of these cases.


Assuntos
Alcalose , Hipopotassemia , Masculino , Humanos , Pessoa de Meia-Idade , Alcalose/etiologia , Alcalose/complicações , Hipopotassemia/etiologia , Rim , Serviço Hospitalar de Emergência
10.
J Physiol ; 601(16): 3667-3686, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37384821

RESUMO

The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.


Assuntos
Astrócitos , Simportadores , Animais , Camundongos , Astrócitos/fisiologia , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Íons/metabolismo , Camundongos Knockout , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores/metabolismo
11.
J Physiol ; 601(24): 5601-5616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975212

RESUMO

Passive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis. Ten healthy male adults were heated passively, using a warm water-perfused suit, up to core temperature + 2°C. Blood samples were taken from the radial artery and internal jugular bulb. Microvesicle concentrations were determined in platelet-poor plasma via cells expressing CD62E (activated endothelial cells), CD31+ /CD42b- (apoptotic endothelial cells), CD14 (monocytes) and CD45 (pan-leucocytes). Cerebral blood flow was measured via duplex ultrasound of the internal carotid and vertebral arteries to determine cerebral exchange kinetics. From baseline to poikilocapnic (alkalotic) hyperthermia, there was no change in microvesicle concentration from any cell origin measured (P-values all >0.05). However, when blood CO2 tension was normalized to baseline levels in hyperthermia, there was a marked increase in cerebral uptake of microvesicles expressing CD62E (P = 0.028), CD31+ /CD42b- (P = 0.003) and CD14 (P = 0.031) compared with baseline, corresponding to large increases in arterial but not jugular venous concentrations. In a subset of seven participants who underwent hypercapnia and hypocapnia in the absence of heating, there was no change in microvesicle concentrations or cerebral exchange, suggesting that hyperthermia potentiated the CO2 /pH-mediated cerebral uptake of microvesicles. These data provide insight into a potential beneficial role of respiratory alkalosis in heat stress. KEY POINTS: The hyperthermia-induced hyperventilatory response is observed in most humans, despite causing potentially harmful reductions in cerebral blood flow. We tested the hypothesis that the respiratory-induced alkalosis is associated with lower circulating microvesicle concentrations, specifically in the brain, despite the reductions in blood flow. At core temperature + 2°C with respiratory alkalosis, microvesicles derived from endothelial cells, monocytes and leucocytes were at concentrations similar to baseline in the arterial and cerebral venous circulation, with no changes in cross-brain microvesicle kinetics. However, when core temperature was increased by 2°C with CO2 /pH normalized to resting levels, there was a marked cerebral uptake of microvesicles derived from endothelial cells and monocytes. The CO2 /pH-mediated alteration in cerebral microvesicle uptake occurred only in hyperthermia. These new findings suggest that the heat-induced hyperventilatory response might serve a beneficial role by preventing potentially inflammatory microvesicle uptake in the brain.


Assuntos
Alcalose Respiratória , Hipertermia Induzida , Adulto , Humanos , Masculino , Hipocapnia , Células Endoteliais/fisiologia , Dióxido de Carbono , Hiperventilação , Circulação Cerebrovascular/fisiologia
12.
Am J Physiol Renal Physiol ; 325(3): F377-F393, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498547

RESUMO

The urinary potassium (K+) excretion machinery is upregulated with increasing dietary K+, but the role of accompanying dietary anions remains inadequately characterized. Poorly absorbable anions, including [Formula: see text], are thought to increase K+ secretion through a transepithelial voltage effect. Here, we tested if they also influence the K+ secretion machinery. Wild-type mice, aldosterone synthase (AS) knockout (KO) mice, or pendrin KO mice were randomized to control, high-KCl, or high-KHCO3 diets. The K+ secretory capacity was assessed in balance experiments. Protein abundance, modification, and localization of K+-secretory transporters were evaluated by Western blot analysis and confocal microscopy. Feeding the high-KHCO3 diet increased urinary K+ excretion and the transtubular K+ gradient significantly more than the high-KCl diet, coincident with more pronounced upregulation of epithelial Na+ channels (ENaC) and renal outer medullary K+ (ROMK) channels and apical localization in the distal nephron. Experiments in AS KO mice revealed that the enhanced effects of [Formula: see text] were aldosterone independent. The high-KHCO3 diet also uniquely increased the large-conductance Ca2+-activated K+ (BK) channel ß4-subunit, stabilizing BKα on the apical membrane, the Cl-/[Formula: see text] exchanger, pendrin, and the apical KCl cotransporter (KCC3a), all of which are expressed specifically in pendrin-positive intercalated cells. Experiments in pendrin KO mice revealed that pendrin was required to increase K+ excretion with the high-KHCO3 diet. In summary, [Formula: see text] stimulates K+ excretion beyond a poorly absorbable anion effect, upregulating ENaC and ROMK in principal cells and BK, pendrin, and KCC3a in pendrin-positive intercalated cells. The adaptive mechanism prevents hyperkalemia and alkalosis with the consumption of alkaline ash-rich diets but may drive K+ wasting and hypokalemia in alkalosis.NEW & NOTEWORTHY Dietary anions profoundly impact K+ homeostasis. Here, we found that a K+-rich diet, containing [Formula: see text] as the counteranion, enhances the electrogenic K+ excretory machinery, epithelial Na+ channels, and renal outer medullary K+ channels, much more than a high-KCl diet. It also uniquely induces KCC3a and pendrin, in B-intercalated cells, providing an electroneutral KHCO3 secretion pathway. These findings reveal new K+ balance mechanisms that drive adaption to alkaline and K+-rich foods, which should guide new treatment strategies for K+ disorders.


Assuntos
Alcalose , Potássio , Animais , Camundongos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Ânions/metabolismo , Dieta , Camundongos Knockout , Potássio/metabolismo , Potássio na Dieta/metabolismo , Sódio/metabolismo , Transportadores de Sulfato/genética
13.
Curr Issues Mol Biol ; 45(12): 9709-9722, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38132452

RESUMO

The maintenance of plasma pH is critical for life in all organisms. The kidney plays a critical role in acid-base regulation in vertebrates by controlling the plasma concentration of bicarbonate. The receptor tyrosine kinase IRR (insulin receptor-related receptor) is expressed in renal ß-intercalated cells and is involved in alkali sensing due to its ability to autophosphorylate under alkalization of extracellular medium (pH > 7.9). In mice with a knockout of the insrr gene, which encodes for IRR, urinary bicarbonate secretion in response to alkali loading is impaired. The specific regulatory mechanisms in the kidney that are under the control of IRR remain unknown. To address this issue, we analyzed and compared the kidney transcriptomes of wild-type and insrr knockout mice under basal or bicarbonate-loaded conditions. Transcriptomic analyses revealed a differential regulation of a number of genes in the kidney. Using TaqMan real-time PCR, we confirmed different expressions of the slc26a4, rps7, slc5a2, aqp6, plcd1, gapdh, rny3, kcnk5, slc6a6 and atp6v1g3 genes in IRR knockout mice. Also, we found that the expression of the kcnk5 gene is increased in wild-type mice after bicarbonate loading but not in knockout mice. Gene set enrichment analysis between the IRR knockout and wild-type samples identified that insrr knockout causes alterations in expression of genes related mostly to the ATP metabolic and electron transport chain processes.

14.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R69-R80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184224

RESUMO

Hyperthermia stimulates ventilation (hyperthermia-induced hyperventilation). In exercising humans, once the core temperature reaches ∼37°C, minute ventilation (V̇e) increases linearly with rising core temperature, and the slope of the relation between V̇e and core temperature reflects the sensitivity of the response. We previously reported that sodium bicarbonate ingestion reduces V̇e during prolonged exercise in the heat without affecting the sensitivity of hyperthermia-induced hyperventilation. Here, we hypothesized that reductions in V̇e associated with sodium bicarbonate ingestion reflect elevation of the core temperature threshold for hyperthermia-induced hyperventilation. Thirteen healthy young males ingested sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg body wt) (NaCl trial), after which they performed a cycle exercise at 50% of peak oxygen uptake in the heat (35°C and 50% relative humidity) following a pre-cooling. The pre-cooling enabled detection of an esophageal temperature (Tes: an index of core temperature) threshold for hyperthermia-induced hyperventilation. The Tes thresholds for increases in V̇e were similar between the two trials (P = 0.514). The slopes relating V̇E to Tes also did not differ between trials (P = 0.131). However, V̇e was lower in the NaHCO3 than in the NaCl trial in the range of Tes = 36.8-38.4°C (P = 0.007, main effect of trial). These results suggest that sodium bicarbonate ingestion does not alter the core temperature threshold or sensitivity of hyperthermia-induced hyperventilation during prolonged exercise in the heat; instead, it downshifts the exercise hyperpnea.


Assuntos
Hipertermia Induzida , Bicarbonato de Sódio , Humanos , Masculino , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipertermia , Hiperventilação , Respiração , Cloreto de Sódio , Temperatura
15.
Am J Kidney Dis ; 82(3): 347-359, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341662

RESUMO

The respiratory system plays an integral part in maintaining acid-base homeostasis. Normal ventilation participates in the maintenance of an open buffer system, allowing for excretion of CO2 produced from the interaction of nonvolatile acids and bicarbonate. Quantitatively of much greater importance is the excretion of CO2 derived from volatile acids produced from the complete oxidation of fat and carbohydrate. A primary increase in CO2 tension of body fluids is the cause of respiratory acidosis and develops most commonly from one or more of the following: (1) disorders affecting gas exchange across the pulmonary capillary, (2) disorders of the chest wall and the respiratory muscles, and/or (3) inhibition of the medullary respiratory center. Respiratory alkalosis or primary hypocapnia is most commonly caused by disorders that increase alveolar ventilation and is defined by an arterial partial pressure of CO2 <35 mm Hg with subsequent alkalization of body fluids. Both disorders can lead to life-threatening complications, making it of paramount importance for the clinician to have a thorough understanding of the cause and treatment of these acid-base disturbances.


Assuntos
Acidose Respiratória , Alcalose Respiratória , Alcalose , Humanos , Alcalose Respiratória/diagnóstico , Alcalose Respiratória/etiologia , Dióxido de Carbono , Hipocapnia , Bicarbonatos , Alcalose/etiologia , Alcalose/complicações , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base
16.
J Exp Biol ; 226(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522267

RESUMO

The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.

17.
Exp Cell Res ; 414(1): 113080, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192837

RESUMO

Several genetic defects on thick ascending limb (TAL) of Henle loop were reported to cause Bartter syndrome (BS) characterized by metabolic alkalosis, hypokalemia, and normal or low blood pressure. Among them, defective basolateral calcium sensing receptors (CaSR) on TAL could result in type V BS that not only presents typical characteristics of BS but also hypocalcemia. Herein we report a 54 years old female patient with a novel mutation of CaSR that leads to type V BS. A sequencing of CaSR gene in peripheral blood mononuclear cells and urine stem cells both disclosed a heterozygous substitution of thymine for guanine (NM_001178065.1:c.2570T > G) in exon 7 at codon 857 resulting in substitution of isoleucine for serine (p.I857S). We performed functional tests of the mutant CaSR gene in vitro using urine stem cells to determine whether this mutation is responsible for the clinical presentations. Urine stem cells expressing abundant CaSR on flow cytometry of this patient and a normal subject were obtained for in vitro functional studies, including intracellular calcium and inositol 1,4,5-trisphosphate concentrations in response to increasing concentrations of extracellular calcium. The results show all of their responses to extracellular calcium are extremely sensitive in urine stem cells of the case as compared to those of the normal subject, indicating a prominent gain-of-function mutation. A novel mutation I857S in transmembrane domain 7 of CaSR in our patient would be added to the list of mutations leading to type V BS.


Assuntos
Síndrome de Bartter , Receptores de Detecção de Cálcio , Síndrome de Bartter/genética , Cálcio/metabolismo , Códon , Feminino , Humanos , Isoleucina/genética , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Receptores de Detecção de Cálcio/genética , Serina/genética
18.
Int J Eat Disord ; 56(3): 574-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571431

RESUMO

BACKGROUND AND OBJECTIVES: Fluid shifts have been ascribed to central diabetes insipidus in patients with anorexia nervosa hospitalized for refeeding. Recent data, however, suggest that vasopressin production is not dysregulated in this population. Our objective was to describe the trajectory of fluid imbalances in relationship to kidney function, electrolyte disturbances, and acid/base balance during refeeding. METHODS: A retrospective review of daily fluid balance and biochemical values was performed in 70 sequential unique patients admitted to University of California at Los Angeles Hospital Medical Stabilization Program for Eating Disorders from December 2018 to November 2020. RESULTS: Participants (2 males/68 females) were between 10 and 24 years of age and with a median body mass index of 16.1 (14.3, 18.1) kg/m2 . A severe negative fluid balance (>-900 ml/day) was observed in 80% of patients at some point during hospitalization. Serum sodium concentrations were normal on admission and remained stable during refeeding. Serum bicarbonate concentrations were 25 ± 1 mEq/dl on admission and increased above the normal range in 31% of patients. Metabolic alkalosis was inversely associated with the development of a negative fluid balance. Estimated glomerular filtration rate was impaired in 54% of patients, improved with refeeding, and was not associated with the development of a severe negative fluid balance or metabolic alkalosis. DISCUSSION: Chronic energy deprivation alters the physiology of renal fluid and bicarbonate handling in ways that are independent of vasopressin and glomerular filtration. Further studies are warranted to understand the renal adaptations that occur during energy restriction and subsequent refeeding. PUBLIC SIGNIFICANCE: Massive urinary fluid losses occur in patients with restrictive eating disorders hospitalized for refeeding. In addition, many patients have impaired renal bicarbonate excretion. These findings suggest that chronic energy deprivation impairs the kidney's ability to handle the shifts in fluid and acid/base balance that occur when appropriate oral nutrition is re-introduced.


Assuntos
Alcalose , Anorexia Nervosa , Síndrome da Realimentação , Masculino , Feminino , Humanos , Bicarbonatos , Hospitalização , Rim/metabolismo , Síndrome da Realimentação/epidemiologia
19.
Eur J Pediatr ; 182(12): 5275-5283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725210

RESUMO

There is limited information available on the clinical data, sweat test trends, and outcomes of individuals with cystic fibrosis (CF) who present with an isolated episode of hypoelectrolytemia with metabolic alkalosis (HMA). This study describes a cohort of Italian individuals with HMA as presenting symptom. The study is a retrospective multicenter analysis of individuals who presented with HMA as an initial symptom and was followed at 8 Italian CF Centers, from March 1988 to March 2022. Demographic, clinical, microbiological, biochemical, and genetic data were extracted from local health records. Ninety-three individuals were enrolled in the study. At first evaluation, 82 (88.2%) were diagnosed with CF, and 11 received a CFTR-Related Disorder (CFTR-RD) diagnostic label. Twenty-three (85.1%) out of the 27 subjects who underwent CF neonatal screening (NBS) resulted falsely negative. After a mean observational period of 11.5 years, most of subjects had a mild pulmonary phenotype, pancreatic sufficiency, and rarely CF-related complications. Four CFTR-RD changed to a CF diagnosis during the study period, resulting in 86 (92.4%) subjects classified as CF. CONCLUSIONS:  Most CF patients presenting with isolated HMA have a mild course of disease and rarely CF-related complications. WHAT IS KNOWN: • Isolated episode of hypoelectrolytemia with metabolic alkalosis is a well-known onset symptom of Cystic Fibrosis in infancy. • There is limited information available on the clinical data and outcomes of individuals with Cystic Fibrosis who present with electrolyte imbalance at diagnosis. WHAT IS NEW: • Most patients with Cystic Fibrosis presenting with isolated hypoelectrolytemia and metabolic alkalosis have a mild course of disease and rarely CF-related complications. • Electrolyte imbalance at diagnosis of Cystic Fibrosis is a common symptom in children not screened for CF at birth, or in those who received a false negative result from newborn screening.


Assuntos
Alcalose , Fibrose Cística , Recém-Nascido , Criança , Humanos , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Triagem Neonatal/métodos , Alcalose/etiologia , Alcalose/complicações , Itália , Eletrólitos , Mutação
20.
Rheumatol Int ; 43(3): 567-574, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800134

RESUMO

We describe an unusual clinical presentation of autoimmune Bartter syndrome in a patient with primary hypothyroidism. A 65-year-old female patient was admitted with neuromuscular weakness associated with hypokalemia and metabolic alkalosis. She had a suboptimal response to potassium supplementation and potassium-sparing diuretic resulting in re-hospitalization with the same symptoms. A detailed serum and urinary biochemistry analysis in the absence of other causes of potassium wasting helped diagnose Bartter syndrome, a rare entity in adults. An autoimmune profile showed anti-Scl-70 antibody to be positive, although she did not develop other systemic features of the disease. Our patient responded to a steroid-based regimen potassium supplement, Indomethacin, and aldosterone antagonist with remarkable resolution of symptoms and correction of electrolyte derangement. We reviewed the literature to search for similar cases and included twenty-seven full-length publications on acquired and autoimmune causes of Bartter syndrome. Our case highlights the fact that hypokalemia with metabolic alkalosis in an adult patient should prompt clinicians to evaluate for common and uncommon conditions. While assessing for abnormal conditions, acquired Bartter syndrome should be considered if a patient has an underlying autoimmune, endocrine, or connective tissue disease.


Assuntos
Alcalose , Síndrome de Bartter , Hipopotassemia , Hipotireoidismo , Adulto , Feminino , Humanos , Idoso , Síndrome de Bartter/complicações , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/metabolismo , Hipopotassemia/complicações , Hipopotassemia/diagnóstico , Potássio , Alcalose/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa