RESUMO
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10â Hz (alpha) or 40â Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Assuntos
Ritmo alfa , Atenção , Estimulação Transcraniana por Corrente Contínua , Percepção Visual , Humanos , Feminino , Masculino , Atenção/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Percepção Visual/fisiologia , Adulto Jovem , Ritmo alfa/fisiologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Campos Visuais/fisiologiaRESUMO
The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.
Assuntos
Ritmo alfa , Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Ritmo alfa/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Sensibilidades de Contraste/fisiologia , Adulto Jovem , Método Duplo-Cego , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Fadiga Mental/fisiopatologiaRESUMO
Social cooperation often requires taking different roles in order to reach a shared goal. By defining individual tasks, these roles dictate processing demands of the collaborators. The main aim of the present study was to examine the hypothesis that induced alpha and lower beta oscillations provide insights into affective and cognitive brain states during social cooperation. Toward this end, an experimental game was used in which participants had to navigate a Pacman figure through a maze by sending and receiving information about the correct moving direction. Supporting our hypotheses, individual roles taken by the collaborators during gameplay were associated with significant changes in alpha and lower beta power. Furthermore, effects were similar when participants played the Pacman Game with human or computer partners. Findings are discussed from the perspective of the information-via-desynchronization hypothesis proposing that alpha and lower beta power decreases reflect states of enhanced cortical information representation. Overall, experimental games are a useful tool for extending basic research on brain oscillations to the domain of naturalistic social interaction as emphasized by the second-person neuroscience perspective.
Assuntos
Encéfalo , Comportamento Cooperativo , Humanos , Comportamento Social , Emoções , CogniçãoRESUMO
The default mode network (DMN) is the most-prominent intrinsic connectivity network, serving as a key architecture of the brain's functional organization. Conversely, dysregulated DMN is characteristic of major neuropsychiatric disorders. However, the field still lacks mechanistic insights into the regulation of the DMN and effective interventions for DMN dysregulation. The current study approached this problem by manipulating neural synchrony, particularly alpha (8 to 12 Hz) oscillations, a dominant intrinsic oscillatory activity that has been increasingly associated with the DMN in both function and physiology. Using high-definition alpha-frequency transcranial alternating current stimulation (α-tACS) to stimulate the cortical source of alpha oscillations, in combination with simultaneous electroencephalography and functional MRI (EEG-fMRI), we demonstrated that α-tACS (versus Sham control) not only augmented EEG alpha oscillations but also strengthened fMRI and (source-level) alpha connectivity within the core of the DMN. Importantly, increase in alpha oscillations mediated the DMN connectivity enhancement. These findings thus identify a mechanistic link between alpha oscillations and DMN functioning. That transcranial alpha modulation can up-regulate the DMN further highlights an effective noninvasive intervention to normalize DMN functioning in various disorders.
Assuntos
Encéfalo/fisiologia , Rede de Modo Padrão , Rede Nervosa/fisiologia , Regulação para Cima , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto JovemRESUMO
Hierarchical predictive coding networks are a general model of sensory processing in the brain. Under neural delays, these networks have been suggested to naturally generate oscillatory activity in approximately the α frequency range (â¼8-12 Hz). This suggests that α oscillations, a prominent feature of EEG recordings, may be a spectral "fingerprint" of predictive sensory processing. Here, we probed this possibility by investigating whether oscillations over the visual cortex predictively encode visual information. Specifically, we examined whether their power carries information about the position of a moving stimulus, in a temporally predictive fashion. In two experiments (N = 32, 18 female; N = 34, 17 female), participants viewed an apparent-motion stimulus moving along a circular path while EEG was recorded. To investigate the encoding of stimulus-position information, we developed a method of deriving probabilistic spatial maps from oscillatory power estimates. With this method, we demonstrate that it is possible to reconstruct the trajectory of a moving stimulus from α/low-ß oscillations, tracking its position even across unexpected motion reversals. We also show that future position representations are activated in the absence of direct visual input, demonstrating that temporally predictive mechanisms manifest in α/ß band oscillations. In a second experiment, we replicate these findings and show that the encoding of information in this range is not driven by visual entrainment. By demonstrating that occipital α/ß oscillations carry stimulus-related information, in a temporally predictive fashion, we provide empirical evidence of these rhythms as a spectral "fingerprint" of hierarchical predictive processing in the human visual system.SIGNIFICANCE STATEMENT "Hierarchical predictive coding" is a general model of sensory information processing in the brain. When in silico predictive coding models are constrained by neural transmission delays, their activity naturally oscillates in roughly the α range (â¼8-12 Hz). Using time-resolved EEG decoding, we show that neural rhythms in this approximate range (α/low-ß) over the human visual cortex predictively encode the position of a moving stimulus. From the amplitude of these oscillations, we are able to reconstruct the stimulus' trajectory, revealing signatures of temporally predictive processing. This provides direct neural evidence linking occipital α/ß rhythms to predictive visual processing, supporting the emerging view of such oscillations as a potential spectral "fingerprint" of hierarchical predictive processing in the human visual system.
Assuntos
Ritmo alfa , Córtex Visual , Humanos , Feminino , Percepção Visual , Encéfalo , Sensação , EletroencefalografiaRESUMO
Prior knowledge has a profound impact on the way we perceive the world. However, it remains unclear how the prior knowledge is maintained in our brains and thereby influences the subsequent conscious perception. The Dalmatian dog illusion is a perfect tool to study prior knowledge, where the picture is initially perceived as noise. Once the prior knowledge was introduced, a Dalmatian dog could be consciously seen, and the picture immediately became meaningful. Using pictures with hidden objects as standard stimuli and similar pictures without hidden objects as deviant stimuli, we investigated the neural representation of prior knowledge and its impact on conscious perception in an oddball paradigm using electroencephalogram (EEG) in both male and female human subjects. We found that the neural patterns between the prestimulus alpha band oscillations and poststimulus EEG activity were significantly more similar for the standard stimuli than for the deviant stimuli after prior knowledge was provided. Furthermore, decoding analysis revealed that persistent neural templates were evoked after the introduction of prior knowledge, similar to that evoked in the early stages of visual processing. In conclusion, the current study suggests that prior knowledge uses alpha band oscillations in a multivariate manner in the prestimulus period and induces specific persistent neural templates in the poststimulus period, enabling the conscious perception of the hidden objects.SIGNIFICANCE STATEMENT The visual world we live in is not always optimal. In dark or noisy environments, prior knowledge can help us interpret imperfect sensory signals and enable us to consciously perceive hidden objects. However, we still know very little about how prior knowledge works at the neural level. Using the Dalmatian dog illusion and multivariate methods, we found that prior knowledge uses prestimulus alpha band oscillations to carry information about the hidden object and exerts a persistent influence in the poststimulus period by inducing specific neural templates. Our findings provide a window into the neural underpinnings of prior knowledge and offer new insights into the role of alpha band oscillations and neural templates associated with conscious perception.
Assuntos
Ilusões , Animais , Cães , Humanos , Masculino , Feminino , Ilusões/fisiologia , Percepção Visual/fisiologia , Eletroencefalografia/métodos , Encéfalo , Estado de Consciência/fisiologia , Estimulação Luminosa/métodosRESUMO
Throughout history, various odors have been harnessed to invigorate or relax the mind. The mechanisms underlying odors' diverse arousal effects remain poorly understood. We conducted five experiments (184 participants) to investigate this issue, using pupillometry, electroencephalography, and the attentional blink paradigm, which exemplifies the limit in attentional capacity. Results demonstrated that exposure to citral, compared to vanillin, enlarged pupil size, reduced resting-state alpha oscillations and alpha network efficiency, augmented beta-gamma oscillations, and enhanced the coordination between parietal alpha and frontal beta-gamma activities. In parallel, it attenuated the attentional blink effect. These effects were observed despite citral and vanillin being comparable in perceived odor intensity, pleasantness, and nasal pungency, and were unlikely driven by semantic biases. Our findings reveal that odors differentially alter the small-worldness of brain network architecture, and thereby brain state and arousal. Furthermore, they establish arousal as a unique dimension in olfactory space, distinct from intensity and pleasantness.
Assuntos
Nível de Alerta , Eletroencefalografia , Odorantes , Percepção Olfatória , Humanos , Masculino , Feminino , Percepção Olfatória/fisiologia , Adulto , Nível de Alerta/fisiologia , Adulto Jovem , Olfato/fisiologia , Córtex Cerebral/fisiologia , Intermitência na Atenção Visual/fisiologia , Monoterpenos Acíclicos , Pupila/fisiologia , BenzaldeídosRESUMO
Alpha oscillations are known to play a central role in several higher-order cognitive functions, especially selective attention, working memory, semantic memory, and creative thinking. Nonetheless, we still know very little about the role of alpha in the generation of more remote semantic associations, which is key to creative and semantic cognition. Furthermore, it remains unclear how these oscillations are shaped by the intention to "be creative," which is the case in most creativity tasks. We aimed to address these gaps in two experiments. In Experiment 1, we compared alpha oscillatory activity (using a method which distinguishes genuine oscillatory activity from transient events) during the generation of free associations which were more vs. less distant from a given concept. In Experiment 2, we replicated these findings and also compared alpha oscillatory activity when people were generating free associations versus associations with the instruction to be creative (i.e. goal-directed). We found that alpha was consistently higher during the generation of more distant semantic associations, in both experiments. This effect was widespread, involving areas in both left and right hemispheres. Importantly, the instruction to be creative seems to increase alpha phase synchronisation from left to right temporal brain areas, suggesting that intention to be creative changed the flux of information in the brain, likely reflecting an increase in top-down control of semantic search processes. We conclude that goal-directed generation of remote associations relies on top-down mechanisms compared to when associations are freely generated.
Assuntos
Ritmo alfa , Criatividade , Objetivos , Semântica , Humanos , Ritmo alfa/fisiologia , Masculino , Feminino , Adulto Jovem , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Associação , Eletroencefalografia , AdolescenteRESUMO
This study was designed to examine how mind-wandering and its neural correlates vary across tasks with different attentional demands, motivated by the context regulation hypothesis of mind-wandering. Participants (n = 59 undergraduates) completed the sustained attention to response task (SART) and the Stroop selective attention task in counterbalanced order while EEG was recorded. The tasks included experience-sampling probes to identify self-reported episodes of mind-wandering, along with retrospective reports. Participants reported more mind-wandering during the SART than the Stroop and during whichever task was presented second during the session, compared with first. Replicating previous findings, EEG data (n = 37 usable participants) indicated increased alpha oscillations during episodes of mind-wandering, compared with on-task episodes, for both the SART and Stroop tasks. ERP data, focused on the P2 component reflecting perceptual processing, found that mind-wandering was associated with increased P2 amplitudes during the Stroop task, counter to predictions from the perceptual decoupling theory. Overall, the study found that self-report and neural correlates of mind-wandering are sensitive to task context. This line of research can further the understanding of how mechanisms of mind-wandering are adapted to varied tasks and situations.
Assuntos
Avaliação Momentânea Ecológica , Pensamento , Humanos , Pensamento/fisiologia , Estudos Retrospectivos , Autorrelato , EletroencefalografiaRESUMO
When exposed to rhythmic patterns with temporal regularity, adults exhibit an inherent ability to extract and anticipate an underlying sequence of regularly spaced beats, which is internally constructed, as beats are experienced even when no events occur at beat positions (e.g., in the case of rests). Perception of rhythm and synchronization to periodicity is indispensable for development of cognitive functions, social interaction, and adaptive behavior. We evaluated neural oscillatory activity in premature newborns (n = 19, mean age, 32 ± 2.59 weeks gestational age) during exposure to an auditory rhythmic sequence, aiming to identify early traces of periodicity encoding and rhythm processing through entrainment of neural oscillations at this stage of neurodevelopment. The rhythmic sequence elicited a systematic modulation of alpha power, synchronized to expected beat locations coinciding with both tones and rests, and independent of whether the beat was preceded by tone or rest. In addition, the periodic alpha-band fluctuations reached maximal power slightly before the corresponding beat onset times. Together, our results show neural encoding of periodicity in the premature brain involving neural oscillations in the alpha range that are much faster than the beat tempo, through alignment of alpha power to the beat tempo, consistent with observations in adults on predictive processing of temporal regularities in auditory rhythms. RESEARCH HIGHLIGHTS: In response to the presented rhythmic pattern, systematic modulations of alpha power showed that the premature brain extracted the temporal regularity of the underlying beat. In contrast to evoked potentials, which are greatly reduced when there is no sounds event, the modulation of alpha power occurred for beats coinciding with both tones and rests in a predictive way. The findings provide the first evidence for the neural coding of periodicity in auditory rhythm perception before the age of term.
Assuntos
Estimulação Acústica , Percepção Auditiva , Encéfalo , Recém-Nascido Prematuro , Periodicidade , Humanos , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Feminino , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Masculino , Eletroencefalografia , Ritmo alfa/fisiologiaRESUMO
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Feminino , Humanos , Idioma , Semântica , Lobo Temporal/fisiologia , Compreensão/fisiologiaRESUMO
Electroencephalography alpha-band (8-13 Hz) activity during visual spatial attention declines in normal aging. We recently reported the impacts of pre-cue baseline alpha and cueing strategy on post-cue anticipatory alpha activity and target processing in visual spatial attention (Wang et al., Cerebral Cortex, 2023). However, whether these factors affected aging effects remains unaddressed. We investigated this issue in two independent experiments (n = 114) with different cueing strategies (instructional vs. probabilistic). When median-splitting young adults (YA) by their pre-cue alpha power, we found that older adults exhibited similar pre-cue and post-cue alpha activity as YA with lower pre-cue alpha, and only YA with higher pre-cue alpha showed significant post-cue alpha activity, suggesting that diminished anticipatory alpha activity was not specific to aging but likely due to a general decrease with baseline alpha. Moreover, we found that the aging effects on cue-related event-related potentials were dependent on cueing strategy but were relatively independent of pre-cue alpha. However, age-related deficits in target-related N1 attentional modulation might depend on both pre-cue alpha and cueing strategy. By considering the impacts of pre-cue alpha and cueing strategy, our findings offer new insights into age-related deficits in anticipatory alpha activity and target processing during visual spatial attention.
Assuntos
Atenção , Sinais (Psicologia) , Adulto Jovem , Humanos , Idoso , Tempo de Reação , Eletroencefalografia , Potenciais Evocados , Percepção VisualRESUMO
The electroencephalography alpha-band (8-13 Hz) activity may represent a crucial neural substrate of visual spatial attention. However, factors likely contributing to alpha activity have not been adequately addressed, which impedes understanding its functional roles. We investigated whether pre-cue alpha power was associated with post-cue alpha activity in 2 independent experiments (n = 30 each) with different cueing strategies (instructional vs. probabilistic) by median-splitting subjects (between-subject) or trials (within-subject) according to pre-cue alpha. In both experiments, only subjects with higher pre-cue alpha showed significant post-cue alpha desynchronization and alpha lateralization, while whether trials had higher or lower pre-cue alpha affected post-cue alpha desynchronization but not alpha lateralization. Furthermore, significant attentional modulation of target processing indexed by N1 component was observed in subjects and trials regardless of higher or lower pre-cue alpha in the instructional cueing experiment. While in the probabilistic cueing experiment, N1 attentional modulation was only observed in higher pre-cue alpha subjects and lower pre-cue alpha trials. In summary, by demonstrating the effects of pre-cue alpha and cueing strategy on post-cue alpha activity and target processing, our results suggest the necessity of considering these 2 contributing factors when investigating the functional roles of alpha activity in visual spatial attention.
Assuntos
Atenção , Sinais (Psicologia) , Humanos , Eletroencefalografia , Tempo de ReaçãoRESUMO
Alpha oscillations are thought to be involved in suppressing distracting input in working-memory tasks. Yet, the spatial-temporal dynamics of such suppression remain unclear. Key questions are whether such suppression reflects a domain-general inattentiveness mechanism, or occurs in a stimulus- or modality-specific manner within cortical areas most responsive to the distracters; and whether the suppression is proactive (i.e., preparatory) or reactive. Here, we addressed these questions using a working-memory task where participants had to memorize an array of visually presented digits and reproduce one of them upon being probed. We manipulated the presence of distracters and the sensory modality in which distracters were presented during memory maintenance. Our results show that sensory areas most responsive to visual and auditory distracters exhibited stronger alpha power increase after visual and auditory distracter presentation respectively. These results suggest that alpha oscillations underlie distracter suppression in a reactive, modality-specific manner.
Assuntos
Ritmo alfa , Memória de Curto Prazo , HumanosRESUMO
Individuals exhibit considerable variability in their capacity to learn and retain new information, including novel vocabulary. Prior research has established the importance of vigilance and electroencephalogram (EEG) alpha rhythm in the learning process. However, the interplay between vigilant attention, EEG alpha oscillations, and an individual's word learning ability (WLA) remains elusive. To address this knowledge gap, here we conducted two experiments with a total of 140 young and middle-aged adults who underwent resting EEG recordings prior to completing a paired-associate word learning task and a psychomotor vigilance test (PVT). The results of both experiments consistently revealed significant positive correlations between WLA and resting EEG alpha oscillations in the occipital and frontal regions. Furthermore, the association between resting EEG alpha oscillations and WLA was mediated by vigilant attention, as measured by the PVT. These findings provide compelling evidence supporting the crucial role of vigilant attention in linking EEG alpha oscillations to an individual's learning ability.
RESUMO
Video game play has been suggested to improve visual and attention processing. Nevertheless, while action video game play is highly dynamic, there is scarce research on how information is temporally discriminated at the millisecond level. This cross-sectional study investigates whether temporal discrimination at the millisecond level in vision varies across action video game players (VGPs; N = 23) and non-video game players (NVGPs; N = 23). Participants discriminated synchronous from asynchronous onsets of two visual targets in virtual reality, while their EEG and oculomotor movements were recorded. Results show an increased sensitivity to short asynchronies (11, 33 and 66 ms) in VGPs compared with NVGPs, which was especially marked at the start of the task, suggesting better temporal discrimination abilities. Pre-targets oculomotor freezing - the inhibition of small fixational saccades - was associated with correct temporal discrimination, probably revealing attentional preparation. However, this parameter did not differ between groups. EEG and reconstruction analyses suggest that the enhancement of temporal discrimination in VGPs during temporal discrimination is related to parieto-occipital processing, and a reduction of alpha-band (8-14 Hz) power and inter-trial phase coherence. Overall, the study reveals an enhanced ability in action video game players to discriminate in time visual events in close temporal proximity combined with reduced alpha-band oscillatory activities. Consequently, playing action video games is associated with an improved temporal resolution of vision.
Assuntos
Desempenho Psicomotor , Jogos de Vídeo , Humanos , Estudos Transversais , Atenção , Movimentos OcularesRESUMO
Age-related structural and functional changes that occur during brain development are critical for cortical development and functioning. Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies have highlighted the utility of power spectra analyses and have uncovered age-related trends that reflect perceptual, cognitive, and behavioural states as well as their underlying neurophysiology. The aim of the current study was to investigate age-related change in aperiodic and periodic alpha activity across a large sample of pre- and school-aged children (N = 502, age range 4 -11-years-of-age). Power spectra were extracted from baseline EEG recordings (eyes closed, eyes open) for each participant and parameterized into aperiodic activity to derive the offset and exponent parameters and periodic alpha oscillatory activity to derive the alpha peak frequency and the associated power estimates. Multilevel models were run to investigate age-related trends and condition-dependent changes for each of these measures. We found quadratic age-related effects for both the aperiodic offset and exponent. In addition, we observed increases in periodic alpha peak frequency as a function of age. Aperiodic measures and periodic alpha power were larger in magnitude during eyes closed compared to the eyes open baseline condition. Taken together, these results advance our understanding of the maturational patterns/trajectories of brain development during early- to middle-childhood.
Assuntos
Eletroencefalografia , Magnetoencefalografia , Criança , Humanos , Pré-Escolar , Eletroencefalografia/métodos , Olho , Encéfalo/fisiologiaRESUMO
Pre-stimulus alpha (α) activity can influence perception of shortly presented, low-contrast stimuli. The underlying mechanisms are often thought to affect perception exactly at the time of presentation. In addition, it is suggested that α cycles determine temporal windows of integration. However, in everyday situations, stimuli are usually presented for periods longer than â¼100 ms and perception is often an integration of information across space and time. Moving objects are just one example. Hence, the question is whether α activity plays a role also in temporal integration, especially when stimuli are integrated over several α cycles. Using electroencephalography (EEG), we investigated the relationship between pre-stimulus brain activity and long-lasting integration in the sequential metacontrast paradigm (SQM), where two opposite vernier offsets, embedded in a stream of lines, are unconsciously integrated into a single percept. We show that increases in α power, even 300 ms before the stimulus, affected the probability of reporting the first offset, shown at the very beginning of the SQM. This effect was mediated by the systematic slowing of the α rhythm that followed the peak in α power. No phase effects were found. Together, our results demonstrate a cascade of neural changes, following spontaneous bursts of α activity and extending beyond a single moment, which influences the sensory representation of visual features for hundreds of milliseconds. Crucially, as feature integration in the SQM occurs before a conscious percept is elicited, this also provides evidence that α activity is linked to mechanisms regulating unconscious processing.
Assuntos
Eletroencefalografia , Inconsciência , Humanos , Eletroencefalografia/métodos , Estado de Consciência , Ritmo alfa/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologiaRESUMO
In a dynamic environment, expectations of the future constantly change based on updated evidence and affect the dynamic allocation of attention. To further investigate the neural mechanisms underlying attentional expectancies, we employed a modified Central Cue Posner Paradigm in which the probability of cues being valid (that is, accurately indicated the upcoming target location) was manipulated. Attentional deployment to the cued location (α), which was governed by precision of predictions on previous trials, was estimated using a hierarchical Bayesian model and was included as a regressor in the analyses of electrophysiological (EEG) data. Our results revealed that before the target appeared, alpha oscillations (8â¼13 Hz) for high-predictability cues (88 % valid) were significantly predicted by precision-dependent attention (α). This relationship was not observed under low-predictability conditions (69 % and 50 % valid cues). After the target appeared, precision-dependent attention (α) correlated with alpha band oscillations only in the valid cue condition and not in the invalid condition. Further analysis under conditions of significant attentional modulation by precision suggested a separate effect of cue orientation. These results provide new insights on how trial-by-trial Bayesian belief updating relates to alpha band encoding of environmentally-sensitive allocation of visual spatial attention.
Assuntos
Atenção , Sinais (Psicologia) , Humanos , Teorema de Bayes , Atenção/fisiologia , Probabilidade , Tempo de Reação/fisiologiaRESUMO
Perception of time is not always veridical; rather, it is subjected to distortions. One such compelling distortion is that the duration of regularly spaced intervals is often overestimated. One account suggests that excitatory phases of neural entrainment concomitant with such stimuli play a major role. However, assessing the correlation between the power of entrained oscillations and time dilation has yielded inconclusive results. In this study, we evaluated whether phase characteristics of neural oscillations impact time dilation. For this purpose, we entrained 10-Hz oscillations and experimentally manipulated the presentation of flickers so that they were presented either in-phase or out-of-phase relative to the established rhythm. Simultaneous electroencephalography (EEG) recordings confirmed that in-phase and out-of-phase flickers had landed on different inhibitory phases of high-amplitude alpha oscillations. Moreover, to control for confounding factors of expectancy and masking, we created two additional conditions. Results, supplemented by the Bayesian analysis, indicated that the phase of entrained visual alpha oscillation does not differentially affect flicker-induced time dilation. Repeating the same experiment with regularly spaced auditory stimuli replicated the null findings. Moreover, we found a robust enhancement of precision for the reproduction of flickers relative to static stimuli that were partially supported by entrainment models. We discussed our results within the framework of neural oscillations and time-perception models, suggesting that inhibitory cycles of visual alpha may have little relevance to the overestimation of regularly spaced intervals. Moreover, based on our findings, we proposed that temporal oscillators, assumed in entrainment models, may act independently of excitatory phases in the brain's lower level sensory areas.