Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2220190120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399401

RESUMO

The MYC proto-oncogene contributes to the pathogenesis of more than half of human cancers. Malignant transformation by MYC transcriptionally up-regulates the core pre-mRNA splicing machinery and causes misregulation of alternative splicing. However, our understanding of how splicing changes are directed by MYC is limited. We performed a signaling pathway-guided splicing analysis to identify MYC-dependent splicing events. These included an HRAS cassette exon repressed by MYC across multiple tumor types. To molecularly dissect the regulation of this HRAS exon, we used antisense oligonucleotide tiling to identify splicing enhancers and silencers in its flanking introns. RNA-binding motif prediction indicated multiple binding sites for hnRNP H and hnRNP F within these cis-regulatory elements. Using siRNA knockdown and cDNA expression, we found that both hnRNP H and F activate the HRAS cassette exon. Mutagenesis and targeted RNA immunoprecipitation implicate two downstream G-rich elements in this splicing activation. Analyses of ENCODE RNA-seq datasets confirmed hnRNP H regulation of HRAS splicing. Analyses of RNA-seq datasets across multiple cancers showed a negative correlation of HNRNPH gene expression with MYC hallmark enrichment, consistent with the effect of hnRNP H on HRAS splicing. Interestingly, HNRNPF expression showed a positive correlation with MYC hallmarks and thus was not consistent with the observed effects of hnRNP F. Loss of hnRNP H/F altered cell cycle progression and induced apoptosis in the PC3 prostate cancer cell line. Collectively, our results reveal mechanisms for MYC-dependent regulation of splicing and point to possible therapeutic targets in prostate cancers.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H , Neoplasias da Próstata , Masculino , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Éxons/genética , Processamento Alternativo/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
Cancer Cell Int ; 23(1): 249, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875914

RESUMO

Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.

3.
J Biol Chem ; 295(18): 6236-6248, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179652

RESUMO

Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 115(35): E8181-E8190, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104386

RESUMO

Alternative pre-mRNA splicing (AS) greatly diversifies metazoan transcriptomes and proteomes and is crucial for gene regulation. Current computational analysis methods of AS from Illumina RNA-sequencing data rely on preannotated libraries of known spliced transcripts, which hinders AS analysis with poorly annotated genomes and can further mask unknown AS patterns. To address this critical bioinformatics problem, we developed a method called the junction usage model (JUM) that uses a bottom-up approach to identify, analyze, and quantitate global AS profiles without any prior transcriptome annotations. JUM accurately reports global AS changes in terms of the five conventional AS patterns and an additional "composite" category composed of inseparable combinations of conventional patterns. JUM stringently classifies the difficult and disease-relevant pattern of intron retention (IR), reducing the false positive rate of IR detection commonly seen in other annotation-based methods to near-negligible rates. When analyzing AS in RNA samples derived from Drosophila heads, human tumors, and human cell lines bearing cancer-associated splicing factor mutations, JUM consistently identified approximately twice the number of novel AS events missed by other methods. Computational simulations showed JUM exhibits a 1.2 to 4.8 times higher true positive rate at a fixed cutoff of 5% false discovery rate. In summary, JUM provides a framework and improved method that removes the necessity for transcriptome annotations and enables the detection, analysis, and quantification of AS patterns in complex metazoan transcriptomes with superior accuracy.


Assuntos
Simulação por Computador , Modelos Genéticos , Anotação de Sequência Molecular , Neoplasias , Precursores de RNA , Splicing de RNA , RNA Neoplásico , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Células K562 , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
5.
Mol Biol Rep ; 47(4): 3031-3040, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32200451

RESUMO

We previously reported a 40-transcripts signature marking the normal mucosa to colorectal adenocarcinoma transition. Eight of these mRNAs also showed splicing alterations, including a specific intron 3 retention in tissue metalloprotease inhibitor I (TIMP1), which decreased during the early steps of colorectal cancer progression. To decipher the mechanism of intron 3 retention/splicing, we first searched for putative RNA binding protein binding sites onto the TIMP1 sequence. We identified potential serine arginine rich splicing factor 1 (SRSF1) and heterogeneous nuclear RiboNucleoProtein A1 (hnRNPA1) binding sites at the end of intron 3 and the beginning of exon 4, respectively. RNA immunoprecipitation showed that hnRNPA1, but not SRSF1 could bind to the corresponding region in TIMP1 pre-mRNA in live cells. Furthermore, using a TIMP1-based ex vivo minigene approach, together with a plasmon resonance in vitro RNA binding assay, we confirmed that hnRNPA1 could indeed bind to wild type TIMP1 exon 4 pre-mRNA and control TMP1 intron 3 splicing, the interaction being abolished in presence of a mutant sequence that disrupted this site. These results indicated that hnRNPA1, upon binding to TIMP1 exon 4, was a positive regulator of intron 3 splicing. We propose that this TIMP1-intron 3 + transcript belongs to the class of nuclear transcripts with "detained" introns, an abundant molecular class, including in cancer.


Assuntos
Neoplasias do Colo/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Processamento Alternativo , Sítios de Ligação/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/metabolismo , Éxons , Células HCT116 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Íntrons , Ligação Proteica/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(19): 5269-74, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114556

RESUMO

Alternative pre-mRNA splicing (AS) is a critical regulatory mechanism that operates extensively in the nervous system to produce diverse protein isoforms. Fruitless AS isoforms have been shown to influence male courtship behavior, but the underlying mechanisms are unknown. Using genome-wide approaches and quantitative behavioral assays, we show that the P-element somatic inhibitor (PSI) and its interaction with the U1 small nuclear ribonucleoprotein complex (snRNP) control male courtship behavior. PSI mutants lacking the U1 snRNP-interacting domain (PSIΔAB mutant) exhibit extended but futile mating attempts. The PSIΔAB mutant results in significant changes in the AS patterns of ∼1,200 genes in the Drosophila brain, many of which have been implicated in the regulation of male courtship behavior. PSI directly regulates the AS of at least one-third of these transcripts, suggesting that PSI-U1 snRNP interactions coordinate the behavioral network underlying courtship behavior. Importantly, one of these direct targets is fruitless, the master regulator of courtship. Thus, PSI imposes a specific mode of regulatory control within the neuronal circuit controlling courtship, even though it is broadly expressed in the fly nervous system. This study reinforces the importance of AS in the control of gene activity in neurons and integrated neuronal circuits, and provides a surprising link between a pleiotropic pre-mRNA splicing pathway and the precise control of successful male mating behavior.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Genes de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Corte , Feminino , Masculino , Proteínas do Tecido Nervoso/fisiologia , Caracteres Sexuais
7.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500099

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded covalently closed RNA rings. Biogenesis of circRNAs, which may occur co-transcriptionally and post-transcriptionally via a back-splicing mechanism, requires the presence of complementary and/or inverted repeat sequences in introns flanking back-spliced exons and is facilitated by RNA-binding proteins. CircRNAs are abundant across eukaryotes; however, their biological functions remain largely speculative. Recently, they have been emerging as new members of a gene regulatory network and contributing factors in various human diseases including cancer, neurological, muscular and cardiovascular disorders. In this review, we present an overview of the current knowledge about circRNAs biogenesis and their aberrant expression in various human disorders. In particular, we focus on the latest discovery of circRNAs global upregulation in myotonic dystrophy type 1 (DM1) skeletal muscles and the role these prospective biomarkers might have for prognosis and therapeutic response in DM1.


Assuntos
Distrofia Miotônica/genética , RNA Circular/genética , Processamento Alternativo , Animais , Biomarcadores , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2753-2760, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729314

RESUMO

The microtubule-associated protein Tau, generated by the MAPT gene is involved in dozens of neurodegenerative conditions ("tauopathies"), including Alzheimer's disease (AD) and frontotemporal lobar degeneration/frontotemporal dementia (FTLD/FTD). The pre-mRNA of MAPT is well studied and its aberrant pre-mRNA splicing is associated with frontotemporal dementia. Using a PCR screen of RNA from human brain tissues, we found that the MAPT locus generates circular RNAs through a backsplicing mechanism from exon 12 to either exon 10 or 7. MAPT circular RNAs are localized in the cytosol and contain open reading frames encoding Tau protein fragments. The MAPT exon 10 is alternatively spliced and proteins involved in its regulation, such as CLK2, SRSF7/9G8, PP1 (protein phosphatase 1) and NIPP1 (nuclear inhibitor of PP1) reduce the abundance of the circular MAPT exon 12 → 10 backsplice RNA after being transfected into cultured HEK293 cells. In summary, we report the identification of new bona fide human brain RNAs produced from the MAPT locus. These may be a component of normal human brain Tau regulation and, since the circular RNAs could generate high molecular weight proteins with multiple microtubule binding sites, they could contribute to taupathies.


Assuntos
Demência Frontotemporal/genética , Precursores de RNA/genética , RNA/genética , Tauopatias/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Encéfalo/metabolismo , Encéfalo/patologia , Éxons/genética , Feminino , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Masculino , Mutação , RNA Circular , Tauopatias/patologia
9.
Semin Cell Dev Biol ; 47-48: 32-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493705

RESUMO

A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Precursores de RNA/genética , Animais , Evolução Molecular , Humanos , Modelos Genéticos , Biossíntese de Proteínas/genética , Precursores de RNA/metabolismo , Estabilidade de RNA/genética
10.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L930-L939, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28775099

RESUMO

A key physiological feature of acute respiratory distress syndrome (ARDS) is inflammation. Toll-like receptor (TLR) signaling is required to combat the infection that underlies many ARDS cases but also contributes to pathological inflammation. Several TLR signaling pathway genes encoding positive effectors of inflammation also produce alternatively spliced mRNAs encoding negative regulators of inflammation. An imbalance between these isoforms could contribute to pathological inflammation and disease severity. To determine whether splicing in TLR pathways is altered in patients with ARDS, we monitored alternative splicing of MyD88 and IRAK1, two genes that function in multiple TLR pathways. The MyD88 and IRAK1 genes produce long proinflammatory mRNAs (MyD88L and IRAK1) and shorter anti-inflammatory mRNAs (MyD88S and IRAK1c). We quantified mRNA encoding inflammatory cytokines and MyD88 and IRAK1 isoforms in peripheral blood mononuclear cells (PBMCs) from 104 patients with ARDS and 30 healthy control subjects. We found that MyD88 pre-mRNA splicing is altered in patients with ARDS in a proinflammatory direction. We also observed altered MyD88 isoform levels in a second critically ill patient cohort, suggesting that these changes may not be unique to ARDS. Early in ARDS, PBMC IRAK1c levels were associated with patient survival. Despite the similarities in MyD88 and IRAK1 alternative splicing observed in previous in vitro studies, there were differences in how MyD88 and IRAK1 alternative splicing was altered in patients with ARDS. We conclude that pre-mRNA splicing of TLR signaling genes is altered in patients with ARDS, and further investigation of altered splicing may lead to novel prognostic and therapeutic approaches.


Assuntos
Processamento Alternativo/genética , Leucócitos Mononucleares/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Síndrome do Desconforto Respiratório/genética
11.
RNA ; 21(1): 75-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414008

RESUMO

SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.


Assuntos
Poliadenilação , Splicing de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Sequência Consenso , Drosophila melanogaster , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcrição Gênica
12.
Alcohol Clin Exp Res ; 41(10): 1715-1724, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28800142

RESUMO

BACKGROUND: Heavy and chronic ethanol (EtOH) exposure can cause significant structural and functional damage to the adult brain. The most devastating consequence of EtOH exposure is the neurotoxicity associated with the depletion of neurons. Regulation of splice variants in the brain can modulate protein functions, which may ultimately affect behaviors associated with alcohol dependence and EtOH-mediated neurotoxicity. As alcohol consumption is associated with neurotoxicity, it is possible that altered splicing of survival and pro-survival factors during the development of alcoholism may contribute to the neurotoxicity. METHODS: Primary human neurons and a neuroblastoma cell line were exposed to different concentrations of EtOH for various time periods. Cell viability and neuronal marker expression were analyzed by MTT assay and immunoblotting, respectively. Effect of EtOH exposure on splicing regulatory protein expression and alternative splicing of candidate genes was analyzed by a biochemical approach. Transcriptional activity of serine/arginine-rich splicing factor 1 (SRSF1) gene was determined by reporter gene analysis. RESULTS: Our results suggest that EtOH exposure to neuronal cells at 25 mM and higher concentrations are detrimental. In addition, EtOH exposure caused a dramatic reduction in SRSF1 expression levels. Furthermore, EtOH exposure led to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by down-regulating the expression levels of SRSF1. Moreover, ectopic expression of both SRSF1 and Mcl-1L isoform was able to recover EtOH-mediated neurotoxicity. CONCLUSIONS: Our results suggest that EtOH exposure can lead to pre-mRNA missplicing of Mcl-1 in neuronal cells. Our results indicate that EtOH exposure of neurons leads to a decrease in the ratio of Mcl-1L/Mcl-1S by favoring pro-apoptotic Mcl-1S splicing over anti-apoptotic Mcl-1L isoform suggesting that Mcl-1S may play a crucial role in neurotoxicity associated with alcohol consumption.


Assuntos
Processamento Alternativo/fisiologia , Etanol/toxicidade , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neurônios/fisiologia , Precursores de RNA/genética , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Neurônios/efeitos dos fármacos , Precursores de RNA/biossíntese
13.
Bioorg Med Chem Lett ; 26(3): 965-968, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26725024

RESUMO

Phosphorylation and dephosphorylation of splicing factors play a key role in pre-mRNA splicing events, and cantharidin and norcantharidin analogs inhibit protein phosphatase-1 (PP1) and change alternative pre-mRNA splicing. Targeted inhibitors capable of selectively inhibiting PP-1 could promote exon 7 inclusion in the survival-of-motorneuron-2 gene (SMN2) and shift the proportion of SMN2 protein from a dysfunctional to a functional form. As a prelude to the development of norcantharidin-tethered oligonucleotide inhibitors, the synthesis a norcantharidin-tethered guanosine was developed in which a suitable tether prevented the undesired cyclization of norcantharidin monoamides to imides and possessed a secondary amine terminus suited to the synthesis of oligonucleotides analogs. Application of this methodology led to the synthesis of a diastereomeric mixture of norcantharidin-tethered guanosines, namely bisammonium (1R,2S,3R,4S)- and (1S,2R,3S,4R)-3-((4-(2-(((((2R,3R,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-2-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl)oxy)oxidophosphoryl)oxy)ethyl)-phenethyl)(methyl)carbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylate, which showed activity in an assay for SMN2 pre-mRNA splicing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Inibidores Enzimáticos/síntese química , Guanosina/análogos & derivados , Proteína Fosfatase 1/antagonistas & inibidores , Processamento Alternativo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Guanosina/síntese química , Guanosina/metabolismo , Células HEK293 , Humanos , Camundongos , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
14.
Mol Cell Neurosci ; 56: 420-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23357783

RESUMO

Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.


Assuntos
Processamento Alternativo , Doenças Neurodegenerativas/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética
15.
Methods Mol Biol ; 2784: 133-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502483

RESUMO

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.


Assuntos
Precursores de RNA , RNA , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização de Ácido Nucleico , Processamento Alternativo
16.
Front Plant Sci ; 13: 836519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222493

RESUMO

Light-triggered transcriptome reprogramming is critical for promoting photomorphogenesis in Arabidopsis seedlings. Nonetheless, recent studies have shed light on the importance of alternative pre-mRNA splicing (AS) in photomorphogenesis. The splicing factors splicing factor for phytochrome signaling (SFPS) and reduced red-light responses in cry1cry2 background1 (RRC1) are involved in the phytochrome B (phyB) signaling pathway and promote photomorphogenesis by controlling pre-mRNA splicing of light- and clock-related genes. However, splicing factors that serve as repressors in phyB signaling pathway remain unreported. Here, we report that the splicing factor SWELLMAP 2 (SMP2) suppresses photomorphogenesis in the light. SMP2 physically interacts with phyB and colocalizes with phyB in photobodies after light exposure. Genetic analyses show that SMP2 antagonizes phyB signaling to promote hypocotyl elongation in the light. The homologs of SMP2 in yeast and human belong to second-step splicing factors required for proper selection of the 3' splice site (3'SS) of an intron. Notably, SMP2 reduces the abundance of the functional REVEILLE 8 a (RVE8a) form, probably by determining the 3'SS, and thereby inhibits RVE8-mediated transcriptional activation of clock genes containing evening elements (EE). Finally, SMP2-mediated reduction of functional RVE8 isoform promotes phytochrome interacting factor 4 (PIF4) expression to fine-tune hypocotyl elongation in the light. Taken together, our data unveil a phyB-interacting splicing factor that negatively regulates photomorphogenesis, providing additional information for further mechanistic investigations regarding phyB-controlled AS of light- and clock-related genes.

17.
Genes (Basel) ; 12(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440445

RESUMO

Alternative pre-mRNA splicing plays a very important role in expanding protein diversity as it generates numerous transcripts from a single protein-coding gene. Therefore, alterations lead this process to neurological human disorders, including Alzheimer's and Parkinson's diseases. Moreover, accumulating evidence indicates that the splicing machinery highly contributes to the cells' ability to adapt to different altered cellular microenvironments, such as hypoxia. Hypoxia is known to have an effect on the expression of proteins involved in a multiple of biological processes, such as erythropoiesis, angiogenesis, and neurogenesis, and is one of the important risk factors in neuropathogenesis. In this review, we discuss the current knowledge of alternatively spliced genes, which, as it is reported, are associated with Alzheimer's and Parkinson's diseases. Additionally, we highlight the possible influence of cellular hypoxic microenvironment for the formation of mRNA isoforms contributing to the development of these neurodegenerative diseases.


Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Hipóxia/genética , Doença de Parkinson/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Neurogênese/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Splicing de RNA/genética
18.
G3 (Bethesda) ; 10(2): 555-567, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810980

RESUMO

Alveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing. While alternative splicing has been shown to regulate inflammatory responses in macrophages in vitro, it has not been investigated on a genome-wide scale in vivo Here we used RNAseq to investigate alternative pre-mRNA splicing in alveolar macrophages isolated from lipopolysaccharide (LPS)-treated mice during the peak of inflammation and during its resolution. We found that lung inflammation induced substantial alternative pre-mRNA splicing in alveolar macrophages. The number of changes in isoform usage was greatest at the peak of inflammation and involved multiple classes of alternative pre-mRNA splicing events. Comparative pathway analysis of inflammation-induced changes in alternative pre-mRNA splicing and differential gene expression revealed overlap of pathways enriched for immune responses such as chemokine signaling and cellular metabolism. Moreover, alternative pre-mRNA splicing of genes in metabolic pathways differed in tissue resident vs. recruited (blood monocyte-derived) alveolar macrophages and corresponded to changes in core metabolism, including a switch to Warburg-like metabolism in recruited macrophages with increased glycolysis and decreased flux through the tricarboxylic acid cycle.


Assuntos
Inflamação/genética , Macrófagos Alveolares/metabolismo , Precursores de RNA , Splicing de RNA , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos C57BL , RNA-Seq
19.
Elife ; 92020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372658

RESUMO

We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a RNA/fisiologia , Cromossomo X/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Íntrons/genética , Íntrons/fisiologia , Masculino , Proteínas de Ligação a RNA/metabolismo , Processos de Determinação Sexual
20.
Virology ; 516: 176-188, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407375

RESUMO

Alternative splicing plays a key role in the HIV-1 life cycle and is essential to maintain an equilibrium of mRNAs that encode viral proteins and polyprotein-isoforms. In particular, since all early HIV-1 proteins are expressed from spliced intronless and late enzymatic and structural proteins from intron containing, i.e. splicing repressed viral mRNAs, cellular splicing factors and splicing regulatory proteins are crucial for the replication capacity. In this review, we will describe the complex network of cis-acting splicing regulatory elements (SREs), which are mainly localized in the neighbourhoods of all HIV-1 splice sites and warrant the proper ratio of individual transcript isoforms. Since SREs represent binding sites for trans-acting cellular splicing factors interacting with the cellular spliceosomal apparatus we will review the current knowledge of interactions between viral RNA and cellular proteins as well as their impact on viral replication. Finally, we will discuss potential therapeutic approaches targeting HIV-1 alternative splicing.


Assuntos
Processamento Alternativo , Infecções por HIV/virologia , HIV-1/genética , Replicação Viral , Animais , Regulação Viral da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , RNA Viral/genética , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa