Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
RNA ; 27(12): 1482-1496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34535545

RESUMO

Conversion of adenosine to inosine in RNA by ADAR enzymes, termed "RNA editing," is essential for healthy brain development. Editing is dysregulated in neuropsychiatric diseases, but has not yet been investigated at scale at the level of individual neurons. We quantified RNA editing sites in nuclear transcriptomes of 3055 neurons from six cortical regions of a neurotypical female donor, and found 41,930 sites present in at least ten nuclei. Most sites were located within Alu repeats in introns or 3' UTRs, and approximately 80% were cataloged in public RNA editing databases. We identified 9285 putative novel editing sites, 29% of which were also detectable in unrelated donors. Intersection with results from bulk RNA-seq studies provided cell-type and spatial context for 1730 sites that are differentially edited in schizophrenic brain donors, and 910 such sites in autistic donors. Autism-related genes were also enriched with editing sites predicted to modify RNA structure. Inhibitory neurons showed higher overall transcriptome editing than excitatory neurons, and the highest editing rates were observed in the frontal cortex. We used generalized linear models to identify differentially edited sites and genes between cell types. Twenty nine genes were preferentially edited in excitatory neurons, and 43 genes were edited more heavily in inhibitory neurons, including RBFOX1, its target genes, and genes in the autism-associated Prader-Willi locus (15q11). The abundance of SNORD115/116 genes from locus 15q11 was positively associated with editing activity across the transcriptome. We contend that insufficient editing of autism-related genes in inhibitory neurons may contribute to the specific perturbation of those cells in autism.


Assuntos
Transtorno Autístico/patologia , Bases de Dados Factuais/estatística & dados numéricos , Genoma Humano , Interneurônios/patologia , Edição de RNA , Esquizofrenia/patologia , Transcriptoma , Transtorno Autístico/genética , Humanos , Interneurônios/metabolismo , Esquizofrenia/genética
2.
J Oral Pathol Med ; 51(5): 429-435, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35416334

RESUMO

BACKGROUND: Differences in cell-free DNA (cfDNA) fragments have been described as a valuable tool to distinguish cancer patients from healthy individuals. We aim to investigate the concentration and integrity of cfDNA fragments in saliva from oral squamous cell carcinoma (OSCC) patients and healthy individuals in order to explore their value as diagnostic biomarkers. METHODS: Saliva samples were collected from a total of 34 subjects (19 OSCC patients and 15 healthy controls). The total concentration of salivary cfDNA (scfDNA) was determined using a fluorometry method and quantitative real-time polymerase chain reaction (qPCR). To evaluate the scfDNA quantity and integrity, qPCR targeting Arthobacter luteus (ALU) sequences at three amplicons of different lengths (60, 115, and 247 bp, respectively) was carried out. ScfDNA integrity indexes (ALU115/ALU60 and ALU247/ALU60) were calculated as the ratio between the absolute concentration of the longer amplicons 115 bp and 247 bp and the total scfDNA amount (amplicon 60 bp). RESULTS: The total scfDNA concentration (ALU60) was higher in OSCC than in healthy donors, but this trend was not statistically significant. The medians of scfDNA integrity indexes, ALU115/ALU60 and ALU247/ALU60, were significantly higher in OSCC, showing area under the curve values of 0.8211 and 0.7018, respectively. CONCLUSION: Our preliminary results suggest that scfDNA integrity indexes (ALU115/ALU60 and ALU247/ALU60) have potential as noninvasive diagnostic biomarkers for OSCC.


Assuntos
Carcinoma de Células Escamosas , Ácidos Nucleicos Livres , Neoplasias Bucais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Saliva
3.
J Clin Lab Anal ; 36(1): e24129, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34799866

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) plays a pivotal role in several pathologies including cancers. The association of insertion/deletion (I/D) polymorphism of the ACE gene with prostate cancer (PC) risk remains controversial. We aimed to investigate for the first time, to our Knowledge, in North Africa the potential relationship between ACE I/D polymorphism with PC susceptibility and clinical outcomes of PC patients. METHODS: This case-control study included 143 healthy individuals and 124 patients diagnosed with PC. Using genomic DNA, the samples were genotyped for ACE I/D polymorphism by polymerase chain reaction (PCR). RESULTS: We found that The D allele is significantly associated with an increased risk of PC and D/D + D/I genotypes were at 3 times increased risk of PC ([p = 0.005], OR = 2.95, IC 95% = 1.26-7.09) compared with I/I genotype (p = 0.003, OR = 0.3, IC 95% = 0.12-0.74). We observed an association between D/D and D/I genotypes with advanced age (≥70 years) (p = 0.014; r2  = 0.22). Furthermore, there is a significant prediction of advanced Gleason score ≥8 based on epidemiological parameters and ACE genotype (p = 0.000; R2  = 0.349), although no significant association was observed with stage and metastasis. CONCLUSION: The ACE I/D polymorphism is likely to predispose to PC and could play a role in PC progression and aggressiveness.


Assuntos
Predisposição Genética para Doença , Mutação INDEL/genética , Peptidil Dipeptidase A/genética , Neoplasias da Próstata , Idoso , Idoso de 80 Anos ou mais , Elementos Alu/genética , Estudos de Casos e Controles , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Tunísia
4.
Hum Mutat ; 42(5): 520-529, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675279

RESUMO

Von Hippel-Lindau (VHL) is a hereditary multisystem disorder caused by germline alterations in the VHL gene. VHL patients are at risk for benign as well as malignant lesions in multiple organs including kidney, adrenal, pancreas, the central nervous system, retina, endolymphatic sac of the ear, epididymis, and broad ligament. An estimated 30%-35% of all families with VHL inherit a germline deletion of one, two, or all three exons. In this study, we have extensively characterized germline deletions identified in patients from 71 VHL families managed at the National Cancer Institute, including 59 partial (PD) and 12 complete VHL deletions (CD). Deletions that ranged in size from 1.09 to 355 kb. Fifty-eight deletions (55 PD and 3 CD) have been mapped to the exact breakpoints. Ninety-five percent (55 of 58) of mapped deletions involve Alu repeats at both breakpoints. Several novel classes of deletions were identified in this cohort, including two cases that have complex rearrangements involving both deletion and inversion, two cases with inserted extra Alu-like sequences, six cases that involve breakpoints in Alu repeats situated in opposite orientations, and a "hotspot" PD of Exon 3 observed in 12 families that involves the same pair of Alu repeats.


Assuntos
Doença de von Hippel-Lindau , Feminino , Deleção de Genes , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética
5.
Mol Biol (Mosk) ; 54(5): 718-724, 2020.
Artigo em Russo | MEDLINE | ID: mdl-33009786

RESUMO

Long nonconding RNAs (lncRNAs) perform a variety of functions: they are involved in chromatin organization, regulation of gene expression at the transcriptional and post-transcriptional levels, and regulation of activity and stability of some proteins. The majority of known lncRNAs contain sequences of mobile genetic elements (MGEs) in a sense or antisense orientation. According to several studies, MGE may serve as functional modules responsible for interactions between the lncRNA and certain proteins, DNA regions, or other RNAs. The available data make it possible to describe groups of lncRNAs that possess common structural features and contain certain MGEs and to predict the characteristics of new lncRNAs. The review summarizes the data on the role that MGE sequences play in lncRNA functions.


Assuntos
Sequências Repetitivas Dispersas , RNA Longo não Codificante , Proteínas , RNA Longo não Codificante/genética
6.
EMBO J ; 34(22): 2758-74, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26464461

RESUMO

Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.


Assuntos
Nucléolo Celular/metabolismo , Loci Gênicos , Precursores de RNA/metabolismo , RNA não Traduzido/metabolismo , Elementos Alu , Nucléolo Celular/genética , Células HeLa , Humanos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA não Traduzido/genética
7.
Bioessays ; 37(2): 175-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25363891

RESUMO

One of the distinctive features of the primate genome is the Alu element, a repetitive short interspersed element, over a million highly similar copies of which account for >10% of the genome. A direct consequence of this feature is that primates' transcriptome is highly enriched in long stable dsRNA structures, the preferred target of adenosine deaminases acting on RNAs (ADARs), which are the enzymes catalyzing A-to-I RNA editing. Indeed, A-to-I editing by ADARs is extremely abundant in primates: over a hundred million editing sites exist in their genomes. However, there are few essential editing sites conserved across mammals that have maintained their editing level despite the radical change in ADAR target landscape. Here, we review and discuss the cost of having an unusual amount of dsRNA and editing in the transcriptome, as well as the opportunities it presents, which might have contributed to the accelerated evolution of the primates.


Assuntos
Genoma/genética , Edição de RNA/genética , Adenosina Desaminase/genética , Animais , Primatas/genética
8.
Sci Rep ; 14(1): 7934, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575614

RESUMO

Biodistribution tests are crucial for evaluating the safety of cell therapy (CT) products in order to prevent unwanted organ homing of these products in patients. Quantitative polymerase chain reaction (qPCR) using intronic Alu is a popular method for biodistribution testing owing to its ability to detect donor cells without modifying CT products and low detection limit. However, Alu-qPCR may generate inaccurate information owing to background signals caused by the mixing of human genomic DNA with that of experimental animals. The aim of this study was to develop a test method that is more specific and sensitive than Alu-qPCR, targeting the mitochondrial DNA (mtDNA) sequence that varies substantially between humans and experimental animals. We designed primers for 12S, 16S, and cytochrome B in mtDNA regions, assessed their specificity and sensitivity, and selected primers and probes for the 12S region. Human adipose-derived stem cells, used as CT products, were injected into the tail vein of athymic NCr-nu/nu mice and detected, 7 d after administration, in their lungs at an average concentration of 2.22 ± 0.69 pg/µg mouse DNA, whereas Alu was not detected. Therefore, mtDNA is more specific and sensitive than Alu and is a useful target for evaluating CT product biodistribution.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Distribuição Tecidual , Primers do DNA , Mitocôndrias/genética
9.
Parasit Vectors ; 16(1): 284, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580774

RESUMO

BACKGROUND: The time required for PCR detection of DNA in human blood meals in vector mosquitoes may vary, depending on the molecular markers used, based on the size and copy number of the amplicons. Detailed knowledge of the blood-feeding behavior of mosquito populations in nature is an essential component for evaluating their vectorial capacity and for assessing the roles of individual vertebrates as potential hosts involved in the transmission of vector-borne diseases. METHODS: Laboratory experiments were conducted to compare the time course of PCR detection of DNA in human blood meals from individual blood-fed Anopheles stephensi mosquitoes, using loci with different characteristics, including two mitochondrial DNA (mtDNA) genes, cytB (228 bp) and 16S ribosomal RNA (rRNA) (157 bp) and nuclear Alu-repeat elements (226 bp) at different time points after the blood meal. RESULTS: Human DNA was detectable up to 84-120 h post-blood-feeding, depending on the length and copy number of the loci. Our results suggest that 16S rRNA and Alu-repeat markers can be successfully recovered from human DNA up to 5 days post-blood-meal. The 16S rDNA and Alu-repeat loci have a significantly (P = 0.008) slower decline rate than the cytB locus. Median detection periods (T50) for the amplicons were 117, 113 and 86.4 h for Alu-repeat, 16S rDNA and cytB, respectively, suggesting an inverse linear relationship between amplicon size/copy number and digestion time. CONCLUSION: This comparative study shows that the Alu-repeat locus is the most efficient marker for time-course identification of human DNA from blood meals in female mosquitoes. It is also a promising tool for determining the anthropophilic index (AI) or human blood index (HBI), i.e. the proportion of blood meals from humans, which is often reported as a relative measure of anthropophagy of different mosquito vectors, and hence a measure of the vector competence of mosquito species collected in the field.


Assuntos
Anopheles , Animais , Humanos , Feminino , Anopheles/genética , Genes Mitocondriais , RNA Ribossômico 16S/genética , Elementos Alu/genética , Mosquitos Vetores , DNA Mitocondrial/genética , DNA Ribossômico , Refeições , Comportamento Alimentar
10.
Epigenetics ; 15(6-7): 765-779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32041475

RESUMO

Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.


Assuntos
Elementos Alu , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas Nucleares/genética , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Código das Histonas , Humanos , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Mob DNA ; 10: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360240

RESUMO

BACKGROUND: Recently, alignment-free sequence analysis methods have gained popularity in the field of personal genomics. These methods are based on counting frequencies of short k-mer sequences, thus allowing faster and more robust analysis compared to traditional alignment-based methods. RESULTS: We have created a fast alignment-free method, AluMine, to analyze polymorphic insertions of Alu elements in the human genome. We tested the method on 2,241 individuals from the Estonian Genome Project and identified 28,962 potential polymorphic Alu element insertions. Each tested individual had on average 1,574 Alu element insertions that were different from those in the reference genome. In addition, we propose an alignment-free genotyping method that uses the frequency of insertion/deletion-specific 32-mer pairs to call the genotype directly from raw sequencing reads. Using this method, the concordance between the predicted and experimentally observed genotypes was 98.7%. The running time of the discovery pipeline is approximately 2 h per individual. The genotyping of potential polymorphic insertions takes between 0.4 and 4 h per individual, depending on the hardware configuration. CONCLUSIONS: AluMine provides tools that allow discovery of novel Alu element insertions and/or genotyping of known Alu element insertions from personal genomes within few hours.

12.
Nucleus ; 7(3): 308-18, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27416361

RESUMO

The nucleolus is a nuclear subcompartment for tightly regulated rRNA production and ribosome subunit biogenesis. It also acts as a cellular stress sensor and can release enriched factors in response to cellular stimuli. Accordingly, the content and structure of the nucleolus change dynamically, which is particularly evident during cell cycle progression: the nucleolus completely disassembles during mitosis and reassembles in interphase. Although the mechanisms that drive nucleolar (re)organization have been the subject of a number of studies, they are only partly understood. Recently, we identified Alu element-containing RNA polymerase II transcripts (aluRNAs) as important for nucleolar structure and rRNA synthesis. Integrating these findings with studies on the liquid droplet-like nature of the nucleolus leads us to propose a model on how RNA polymerase II transcripts could regulate the assembly of the nucleolus in response to external stimuli and during cell cycle progression.


Assuntos
Nucléolo Celular/metabolismo , RNA Polimerase II/genética , Animais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Biochimie ; 117: 22-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051678

RESUMO

It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression.


Assuntos
Elementos Alu/genética , Regulação da Expressão Gênica , Edição de RNA , RNA não Traduzido/genética , Transcriptoma/genética , Animais , Humanos , Íntrons/genética , Modelos Genéticos , Primatas
14.
Front Oncol ; 2: 197, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23293768

RESUMO

Solid tumors exhibit chromosomal rearrangements resulting in gain or loss of multiple chromosomal loci (copy number variation, or CNV), and translocations that occasionally result in the creation of novel chimeric genes. In the case of breast cancer, although most individual tumors each have unique CNV landscape, the breakpoints, as measured over large datasets, appear to be non-randomly distributed in the genome. Breakpoints show a significant regional concentration at genomic loci spanning perhaps several megabases. The proximal cause of these breakpoint concentrations is a subject of speculation, but is, as yet, largely unknown. To shed light on this issue, we have performed a bio-statistical analysis on our previously published data for a set of 119 breast tumors and normal controls (Wiedswang et al., 2003), where each sample has both high-resolution CNV and methylation data. The method examined the distribution of closeness of breakpoint regions with differentially methylated regions (DMR), coupled with additional genomic parameters, such as repeat elements and designated "fragile sites" in the reference genome. Through this analysis, we have identified a set of 93 regional loci called breakpoint enriched DMR (BEDMRs) characterized by altered DNA methylation in cancer compared to normal cells that are associated with frequent breakpoint concentrations within a distance of 1 Mb. BEDMR loci are further associated with local hypomethylation (66%), concentrations of the Alu SINE repeats within 3 Mb (35% of the cases), and tend to occur near a number of cancer related genes such as the protocadherins, AKT1, DUB3, GAB2. Furthermore, BEDMRs seem to deregulate members of the histone gene family and chromatin remodeling factors, e.g., JMJD1B, which might affect the chromatin structure and disrupt coordinate signaling and repair. From this analysis we propose that preference for chromosomal breakpoints is related to genome structure coupled with alterations in DNA methylation and hence, chromatin structure, associated with tumorigenesis.

15.
J Biomol Tech ; 20(5): 236-40, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19949694

RESUMO

Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as a source of contamination, which might occur during PCR setup, we exposed tubes of water to the air of a laboratory and clean hood for up to 24 h. To increase the chances of contamination, we also investigated a busy open-plan office in the same way. All of the experiments showed the presence of human and rodent DNA contamination. However, there was no accumulation of the contamination in any of the environments investigated, suggesting that the air was not the source of contamination. Even the air from a busy open-plan office was a poor source of contamination for all of the DNA sequences investigated (human, bacterial, fungal, and rodent). This demonstrates that the personnel and immediate laboratory environment are not necessarily to blame for the observed contamination.


Assuntos
DNA/análise , Reação em Cadeia da Polimerase/métodos , Ar , Movimentos do Ar , Poluentes Atmosféricos , Elementos Alu , Animais , Sequência de Bases , Candida/metabolismo , DNA Ribossômico/genética , Monitoramento Ambiental/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa