RESUMO
OBJECTIVE: The present study aimed to determine whether peripheral blood neural cell adhesion molecule (NCAM)/amphiphysin 1 dual-labeled exosomal proteins and microRNAs (miRs) might serve as a marker for the early diagnosis of Alzheimer's disease (AD). METHODS: This observational, retrospective, multicenter study used a two-stage design conducted in Beijing and Shanghai, China. The subjects included 76 patients with subjective cognitive decline (SCD), 80 with amnestic mild cognitive impairment (aMCI), 76 with dementia of Alzheimer's type (AD), 40 with vascular dementia (VaD), and 40 controls in the discovery stage. These results were confirmed in the verification stage. The levels of Aß42, Aß42/40, T-Tau, P-T181-tau, neurofilament light chain (NfL), and miR-29c-3p in peripheral blood amphiphysin 1 single-labeled and NCAM/amphiphysin 1 dual-labeled exosomes were captured and detected by immunoassay. RESULTS: In the discovery stage, the levels of Aß42 and miR-29c-3p in peripheral blood NCAM/amphiphysin 1 dual-labeled exosome of the SCD group were significantly higher than those in control and VaD groups (all P < 0.05). The verification stage further confirmed the results of the discovery stage. Plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p showed a good diagnostic performance. The NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had the highest AUC for diagnosis of SCD. The levels of Aß42, Aß42/40, Tau, P-T181-tau, and miR-29c-3p in peripheral blood exosomes were correlated to those in CSF (all P < 0.05). The combination of exosomal biomarkers had slightly higher diagnostic efficiency than the individual biomarkers and that the exosomal biomarkers had the same diagnostic power as the CSF biomarkers. CONCLUSION: The plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had potential advantages in the diagnosis of SCD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Exossomos , MicroRNAs , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Biomarcadores/metabolismo , China , Disfunção Cognitiva/metabolismo , Demência Vascular/metabolismo , Exossomos/metabolismo , Humanos , MicroRNAs/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Estudos RetrospectivosRESUMO
Amphiphysin 1 (AMPH-1) is a nerve terminal-enriched protein and it is a 128-kD protein with three identified functional domains. Some studies found that AMPH-1 was a dominant autoantigen associated with breast cancer and melanoma. However, its function in lung cancer is unknown. Here, we showed that AMPH-1 knockdown dramatically increased cell proliferation, attenuated cell apoptosis, and promoted cell cycle progression in human lung cancer cells. In vivo xenograft studies confirmed that the AMPH-1-knockdown cells were more tumorigenic than the controls. Moreover, we demonstrated that silencing AMPH-1 markedly activated Ras-Raf-MEK-ERK signal pathway. In summary, our results identified the anti-oncogenic function of AMPH-1 in lung cancer in vitro and in vivo. It is proposed that AMPH-1 may have potential as a new therapeutic target in human lung cancer treatment.
Assuntos
Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Apoptose , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Amphiphysin 1 (AMPH-1) is a nerve terminals-enriched protein involved in endocytosis, and we observe that its expression is increased in breast cancer tumor in compared with normal breast. However, its function in breast cancer is unknown. Here we aim to explore the role of AMPH-1 in breast cancer cells. Knockdown of AMPH-1 in breast cancer cells promotes cell proliferation, cell cycle progression and cell migration, and attenuates cell apoptosis. Of note, knockdown of AMPH-1 promotes breast cancer progression in xenograft mouse model. These oncogenic phenotypes may be partially due to the activated EMT and ERK pathways after inhibition of AMPH-1. Oncomine analyses of multiple breast cancer patient datasets show that reduced AMPH-1 mRNA level is significantly associated with breast cancer patients having metastatic events, advanced stage, poor clinical outcomes, and Paclitaxel+FEC treatment resistance. In summary, our results identified the anti-oncogenic function of AMPH-1 in breast cancer in vitro and in vivo. Activation of AMPH-1 may be a promising approach to treat breast cancer patients.
RESUMO
Mammalian cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase mainly expressed in the central nervous system and believed to be involved in neuronal functions. However, the functions of CDKL5 in fishes have not been investigated. Therefore, in this study, we cloned and characterized zebrafish CDKL5 (zCDKL5) and its substrate, amphiphysin 1 (zAmph1). Two alternative splice variants of zCDKL5, zCDKL5-Long (zCDKL5-L) and zCDKL5-Short (zCDKL5-S), and three splice variants of zAmph1, zAmph1a, zAmph1b and zAmph1c, were cloned from a zebrafish cDNA library. Using zAmph1a point mutants, we identified Ser-285 and Ser-293 as phosphorylation sites of zAmph1a by CDKL5. Transiently expressed zCDKL5-L and zCDKL5-S colocalized with zAmph1a in the cytoplasm of 293T cells. RT-PCR analysis revealed that zCDKL5-L was first observed 12hours post-fertilization (hpf) and increased thereafter, while zCDKL5-S appeared just after fertilization. zAmph1a was detected in all embryogenic stages and zAmph1b appeared from 12hpf, but the expression of zAmph1c was not observed in our experiments. In adult fish, zCDKL5-L was mainly expressed in the brain, but zCDKL5-S showed ubiquitous expression. zAmph1a was observed most abundantly in the eyes, whereas zAmph1b was predominantly expressed in the brain. zAmph1c was scarcely detected. These results suggest that phosphorylation of Amph1 by CDKL5 may be a common feature throughout animal species.
Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer's disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD. METHODS: In this study, we analyzed BIN1 mRNA and protein levels in human brain samples from individuals with or without AD. In addition, we characterized the BIN1 expression and isoform diversity in human and rodent tissue by immunohistochemistry and immunoblotting using a panel of BIN1 antibodies. RESULTS: Here, we report on BIN1 isoform diversity in the human brain and document alterations in the levels of select BIN1 isoforms in individuals with AD. In addition, we report striking BIN1 localization to white matter tracts in rodent and the human brain, and document that the large majority of BIN1 is expressed in mature oligodendrocytes whereas neuronal BIN1 represents a minor fraction. This predominant non-neuronal BIN1 localization contrasts with the strict neuronal expression and presynaptic localization of the BIN1 paralog, Amphiphysin 1. We also observe upregulation of BIN1 at the onset of postnatal myelination in the brain and during differentiation of cultured oligodendrocytes. Finally, we document that the loss of BIN1 significantly correlates with the extent of demyelination in multiple sclerosis lesions. CONCLUSION: Our study provides new insights into the brain distribution and cellular expression of an important risk factor associated with late-onset AD. We propose that efforts to define how genetic variants in BIN1 elevate the risk for AD would behoove to consider BIN1 function in the context of its main expression in mature oligodendrocytes and the potential for a role of BIN1 in the membrane remodeling that accompanies the process of myelination.